These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 2504276)
1. L-serine analogues form Schiff base and quinonoidal intermediates with Escherichia coli tryptophan synthase. Houben KF; Kadima W; Roy M; Dunn MF Biochemistry; 1989 May; 28(10):4140-7. PubMed ID: 2504276 [TBL] [Abstract][Full Text] [Related]
2. Detection and identification of intermediates in the reaction of L-serine with Escherichia coli tryptophan synthase via rapid-scanning ultraviolet-visible spectroscopy. Drewe WF; Dunn MF Biochemistry; 1985 Jul; 24(15):3977-87. PubMed ID: 3931672 [TBL] [Abstract][Full Text] [Related]
3. The tryptophan synthase bienzyme complex transfers indole between the alpha- and beta-sites via a 25-30 A long tunnel. Dunn MF; Aguilar V; Brzović P; Drewe WF; Houben KF; Leja CA; Roy M Biochemistry; 1990 Sep; 29(37):8598-607. PubMed ID: 2271543 [TBL] [Abstract][Full Text] [Related]
4. Application of rapid-scanning, stopped-flow spectroscopy to the characterization of intermediates formed in the reactions of L- and D-tryptophan and beta-mercaptoethanol with Escherichia coli tryptophan synthase. Drewe WF; Koerber SC; Dunn MF Biochimie; 1989 Apr; 71(4):509-19. PubMed ID: 2503056 [TBL] [Abstract][Full Text] [Related]
5. Allosteric regulation of tryptophan synthase: effects of pH, temperature, and alpha-subunit ligands on the equilibrium distribution of pyridoxal 5'-phosphate-L-serine intermediates. Peracchi A; Bettati S; Mozzarelli A; Rossi GL; Miles EW; Dunn MF Biochemistry; 1996 Feb; 35(6):1872-80. PubMed ID: 8639669 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the reaction of L-serine and indole with Escherichia coli tryptophan synthase via rapid-scanning ultraviolet-visible spectroscopy. Drewe WF; Dunn MF Biochemistry; 1986 May; 25(9):2494-501. PubMed ID: 3087420 [TBL] [Abstract][Full Text] [Related]
7. Allosteric effects acting over a distance of 20-25 A in the Escherichia coli tryptophan synthase bienzyme complex increase ligand affinity and cause redistribution of covalent intermediates. Houben KF; Dunn MF Biochemistry; 1990 Mar; 29(9):2421-9. PubMed ID: 2186812 [TBL] [Abstract][Full Text] [Related]
8. Subunit interactions of tryptophan synthase from Escherichia coli as revealed by binding studies with pyridoxal phosphate analogues. Tschopp J; Kirschner K Biochemistry; 1980 Sep; 19(19):4514-21. PubMed ID: 6996720 [TBL] [Abstract][Full Text] [Related]
9. Proton transfers in the beta-reaction catalyzed by tryptophan synthase. Hur O; Niks D; Casino P; Dunn MF Biochemistry; 2002 Aug; 41(31):9991-10001. PubMed ID: 12146963 [TBL] [Abstract][Full Text] [Related]
10. Allosteric interactions coordinate catalytic activity between successive metabolic enzymes in the tryptophan synthase bienzyme complex. Brzović PS; Ngo K; Dunn MF Biochemistry; 1992 Apr; 31(15):3831-9. PubMed ID: 1567839 [TBL] [Abstract][Full Text] [Related]
11. A single amino acid switch within the "hinge" region of the tryptophan synthase beta subunit of Escherichia coli that leads to diminished association with alpha subunit and arrested conversion of ESII to product. Zhao GP; Somerville RL J Biol Chem; 1993 Jul; 268(20):14921-31. PubMed ID: 8325869 [TBL] [Abstract][Full Text] [Related]
12. The mechanism of binding of L-serine to tryptophan synthase from Escherichia coli. Lane AN; Kirschner K Eur J Biochem; 1983 Jan; 129(3):561-70. PubMed ID: 6402361 [TBL] [Abstract][Full Text] [Related]
13. pH dependence of tryptophan synthase catalytic mechanism: I. The first stage, the beta-elimination reaction. Schiaretti F; Bettati S; Viappiani C; Mozzarelli A J Biol Chem; 2004 Jul; 279(28):29572-82. PubMed ID: 15117965 [TBL] [Abstract][Full Text] [Related]
14. Evidence of a low-barrier hydrogen bond in the tryptophan synthase catalytic mechanism. Hur O; Leja C; Dunn MF Biochemistry; 1996 Jun; 35(23):7378-86. PubMed ID: 8652514 [TBL] [Abstract][Full Text] [Related]
15. Tryptophan synthase: structure and function of the monovalent cation site. Dierkers AT; Niks D; Schlichting I; Dunn MF Biochemistry; 2009 Nov; 48(46):10997-1010. PubMed ID: 19848417 [TBL] [Abstract][Full Text] [Related]
16. Differential effects of temperature and hydrostatic pressure on the formation of quinonoid intermediates from L-Trp and L-Met by H463F mutant Escherichia coli tryptophan indole-lyase. Phillips RS; Holtermann G Biochemistry; 2005 Nov; 44(43):14289-97. PubMed ID: 16245945 [TBL] [Abstract][Full Text] [Related]
17. Stereoelectronic control of bond formation in Escherichia coli tryptophan synthase: substrate specificity and enzymatic synthesis of the novel amino acid dihydroisotryptophan. Roy M; Keblawi S; Dunn MF Biochemistry; 1988 Sep; 27(18):6698-704. PubMed ID: 3058204 [TBL] [Abstract][Full Text] [Related]
18. Allosteric linkages between beta-site covalent transformations and alpha-site activation and deactivation in the tryptophan synthase bienzyme complex. Leja CA; Woehl EU; Dunn MF Biochemistry; 1995 May; 34(19):6552-61. PubMed ID: 7756286 [TBL] [Abstract][Full Text] [Related]
19. L-serine binds to arginine-148 of the beta 2 subunit of Escherichia coli tryptophan synthase. Tanizawa K; Miles EW Biochemistry; 1983 Jul; 22(15):3594-603. PubMed ID: 6412746 [TBL] [Abstract][Full Text] [Related]
20. BetaQ114N and betaT110V mutations reveal a critically important role of the substrate alpha-carboxylate site in the reaction specificity of tryptophan synthase. Blumenstein L; Domratcheva T; Niks D; Ngo H; Seidel R; Dunn MF; Schlichting I Biochemistry; 2007 Dec; 46(49):14100-16. PubMed ID: 18004874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]