These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Protein metabolism: How the proteasome adapts to stress. Baumann K Nat Rev Mol Cell Biol; 2014 Sep; 15(9):562-3. PubMed ID: 25096048 [No Abstract] [Full Text] [Related]
3. Proteasome Activation is Mediated via a Functional Switch of the Rpt6 C-terminal Tail Following Chaperone-dependent Assembly. Sokolova V; Li F; Polovin G; Park S Sci Rep; 2015 Oct; 5():14909. PubMed ID: 26449534 [TBL] [Abstract][Full Text] [Related]
4. Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Tomko RJ; Funakoshi M; Schneider K; Wang J; Hochstrasser M Mol Cell; 2010 May; 38(3):393-403. PubMed ID: 20471945 [TBL] [Abstract][Full Text] [Related]
5. Yeast Nst1 is a novel component of P-bodies and is a specific suppressor of proteasome base assembly defects. Cheng CL; Wong MK; Hochstrasser M Mol Biol Cell; 2021 Oct; 32(20):ar6. PubMed ID: 34347506 [TBL] [Abstract][Full Text] [Related]
7. Hexameric assembly of the proteasomal ATPases is templated through their C termini. Park S; Roelofs J; Kim W; Robert J; Schmidt M; Gygi SP; Finley D Nature; 2009 Jun; 459(7248):866-70. PubMed ID: 19412160 [TBL] [Abstract][Full Text] [Related]
8. Reconfiguration of the proteasome during chaperone-mediated assembly. Park S; Li X; Kim HM; Singh CR; Tian G; Hoyt MA; Lovell S; Battaile KP; Zolkiewski M; Coffino P; Roelofs J; Cheng Y; Finley D Nature; 2013 May; 497(7450):512-6. PubMed ID: 23644457 [TBL] [Abstract][Full Text] [Related]
9. Ubiquitin-dependent switch during assembly of the proteasomal ATPases mediated by Not4 ubiquitin ligase. Fu X; Sokolova V; Webb KJ; Old W; Park S Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13246-13251. PubMed ID: 30530678 [TBL] [Abstract][Full Text] [Related]
10. Two alternative mechanisms regulate the onset of chaperone-mediated assembly of the proteasomal ATPases. Nahar A; Fu X; Polovin G; Orth JD; Park S J Biol Chem; 2019 Apr; 294(16):6562-6577. PubMed ID: 30814255 [TBL] [Abstract][Full Text] [Related]
11. Assembly checkpoint of the proteasome regulatory particle is activated by coordinated actions of proteasomal ATPase chaperones. Nahar A; Sokolova V; Sekaran S; Orth JD; Park S Cell Rep; 2022 Jun; 39(10):110918. PubMed ID: 35675778 [TBL] [Abstract][Full Text] [Related]
12. Phosphorylation of the 19S regulatory particle ATPase subunit, Rpt6, modifies susceptibility to proteotoxic stress and protein aggregation. Marquez-Lona EM; Torres-Machorro AL; Gonzales FR; Pillus L; Patrick GN PLoS One; 2017; 12(6):e0179893. PubMed ID: 28662109 [TBL] [Abstract][Full Text] [Related]
13. Molecular chaperones of the Hsp70 family assist in the assembly of 20S proteasomes. Hammack LJ; Firestone K; Chang W; Kusmierczyk AR Biochem Biophys Res Commun; 2017 Apr; 486(2):438-443. PubMed ID: 28322792 [TBL] [Abstract][Full Text] [Related]
14. Oxidative and salt stresses alter the 26S proteasome holoenzyme and associated protein profiles in Arabidopsis thaliana. Bonea D; Noureddine J; Gazzarrini S; Zhao R BMC Plant Biol; 2021 Oct; 21(1):486. PubMed ID: 34696730 [TBL] [Abstract][Full Text] [Related]
15. The penultimate step of proteasomal ATPase assembly is mediated by a switch dependent on the chaperone Nas2. Sekaran S; Park S J Biol Chem; 2023 Feb; 299(2):102870. PubMed ID: 36621624 [TBL] [Abstract][Full Text] [Related]
16. Structural basis for proteasome formation controlled by an assembly chaperone nas2. Satoh T; Saeki Y; Hiromoto T; Wang YH; Uekusa Y; Yagi H; Yoshihara H; Yagi-Utsumi M; Mizushima T; Tanaka K; Kato K Structure; 2014 May; 22(5):731-43. PubMed ID: 24685148 [TBL] [Abstract][Full Text] [Related]