These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25043)

  • 1. Purification and some properties of riboflavin synthetase from Bacillus stearothermophilus ATCC 8005.
    Suzuki Y; Terai Y; Abe S
    Appl Environ Microbiol; 1978 Feb; 35(2):258-63. PubMed ID: 25043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Riboflavin synthetase from Eremothecium ashbyii and a salvage pathway of the by-product in the enzyme reaction.
    Mitsuda H; Nakajima K; Nadamoto T; Yamada Y
    Methods Enzymol; 1980; 66():307-23. PubMed ID: 6768961
    [No Abstract]   [Full Text] [Related]  

  • 3. Isolation and properties of 6-phosphogluconate dehydrogenase from Escherichia coli. Some comparisons with the thermophilic enzyme from Bacillus stearothermophilus.
    Veronese FM; Boccù E; Fontana A
    Biochemistry; 1976 Sep; 15(18):4026-33. PubMed ID: 786365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of riboflavin. Enzymatic formation of 6,7-dimethyl-8-ribityllumazine by heavy riboflavin synthase from Bacillus subtilis.
    Neuberger G; Bacher A
    Biochem Biophys Res Commun; 1986 Sep; 139(3):1111-6. PubMed ID: 3094525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the second product of the riboflavin synthetase reaction.
    Mitsuda H; Nadamoto T; Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 1976; 22(5):381-7. PubMed ID: 1034674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of riboflavin. 6,7-Dimethyl-8-ribityllumazine 5'-phosphate is not a substrate for riboflavin synthase.
    Harzer G; Rokos H; Otto MK; Bacher A; Ghisla S
    Biochim Biophys Acta; 1978 Apr; 540(1):48-54. PubMed ID: 416855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct metal dependence for catalytic and structural functions in the L-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus.
    Lee DW; Choe EA; Kim SB; Eom SH; Hong YH; Lee SJ; Lee HS; Lee DY; Pyun YR
    Arch Biochem Biophys; 2005 Feb; 434(2):333-43. PubMed ID: 15639234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus.
    Chen W; Chen H; Xia Y; Zhao J; Tian F; Zhang H
    J Dairy Sci; 2008 May; 91(5):1751-8. PubMed ID: 18420605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and properties of homoprotocatechuate 2,3-dioxygenase from Bacillus stearothermophilus.
    Jamaluddin MP
    J Bacteriol; 1977 Feb; 129(2):690-7. PubMed ID: 838683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-binding studies on light riboflavin synthase from Bacillus subtilis.
    Otto MK; Bacher A
    Eur J Biochem; 1981 Apr; 115(3):511-7. PubMed ID: 6786884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. beta-Galactosidase from Bacillus stearothermophilus.
    Goodman RE; Pederson DM
    Can J Microbiol; 1976 Jun; 22(6):817-25. PubMed ID: 6142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some catalytic and molecular properties of threonine deaminase from Bacillus stearothermophilus.
    Muramatsu N; Nosoh Y
    J Biochem; 1976 Sep; 80(3):485-90. PubMed ID: 10288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable ammonia-specific NAD synthetase from Bacillus stearothermophilus: purification, characterization, gene cloning, and applications.
    Yamaguchi F; Koga S; Yoshioka I; Takahashi M; Sakuraba H; Ohshima T
    Biosci Biotechnol Biochem; 2002 Oct; 66(10):2052-9. PubMed ID: 12450114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.
    Eberhardt S; Korn S; Lottspeich F; Bacher A
    J Bacteriol; 1997 May; 179(9):2938-43. PubMed ID: 9139911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy riboflavin synthase from Bacillus subtilis. Quaternary structure and reaggregation.
    Bacher A; Ludwig HC; Schnepple H; Ben-Shaul Y
    J Mol Biol; 1986 Jan; 187(1):75-86. PubMed ID: 3083108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and properties of deoxyribonucleic acid polymerase from Bacillus stearothermophilus.
    Kaboev OK; Luchkina LA; Akhmedov AT; Bekker ML
    J Bacteriol; 1981 Jan; 145(1):21-6. PubMed ID: 7462144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a thermostable Bacillus stearothermophilus alpha-amylase.
    Vihinen M; Mäntsälä P
    Biotechnol Appl Biochem; 1990 Aug; 12(4):427-35. PubMed ID: 2119192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic studies of riboflavin oversynthesis in Eremothecium ashbyii.
    Nakajima K; Minematsu M
    J Nutr Sci Vitaminol (Tokyo); 2004 Jun; 50(3):155-60. PubMed ID: 15386926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Riboflavin synthases of Bacillus subtilis. Purification and properties.
    Bacher A; Baur R; Eggers U; Harders HD; Otto MK; Schnepple H
    J Biol Chem; 1980 Jan; 255(2):632-7. PubMed ID: 6766130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-steady-state kinetic analysis of riboflavin synthase using a pentacyclic reaction intermediate as substrate.
    Illarionov B; Haase I; Fischer M; Bacher A; Schramek N
    Biol Chem; 2005 Feb; 386(2):127-36. PubMed ID: 15843156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.