These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Fracture of brittle metallic glasses: brittleness or plasticity. Xi XK; Zhao DQ; Pan MX; Wang WH; Wu Y; Lewandowski JJ Phys Rev Lett; 2005 Apr; 94(12):125510. PubMed ID: 15903937 [TBL] [Abstract][Full Text] [Related]
7. Dilatancy induced ductile-brittle transition of shear band in metallic glasses. Zeng F; Jiang MQ; Dai LH Proc Math Phys Eng Sci; 2018 Apr; 474(2212):20170836. PubMed ID: 29740259 [TBL] [Abstract][Full Text] [Related]
8. Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses. Murali P; Guo TF; Zhang YW; Narasimhan R; Li Y; Gao HJ Phys Rev Lett; 2011 Nov; 107(21):215501. PubMed ID: 22181893 [TBL] [Abstract][Full Text] [Related]
9. Tensile plasticity in metallic glasses with pronounced β relaxations. Yu HB; Shen X; Wang Z; Gu L; Wang WH; Bai HY Phys Rev Lett; 2012 Jan; 108(1):015504. PubMed ID: 22304268 [TBL] [Abstract][Full Text] [Related]
10. Superelongation and atomic chain formation in nanosized metallic glass. Luo JH; Wu FF; Huang JY; Wang JQ; Mao SX Phys Rev Lett; 2010 May; 104(21):215503. PubMed ID: 20867114 [TBL] [Abstract][Full Text] [Related]
11. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Hays CC; Kim CP; Johnson WL Phys Rev Lett; 2000 Mar; 84(13):2901-4. PubMed ID: 11018971 [TBL] [Abstract][Full Text] [Related]
12. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Jang D; Greer JR Nat Mater; 2010 Mar; 9(3):215-9. PubMed ID: 20139966 [TBL] [Abstract][Full Text] [Related]
13. On the correlation between microscopic structural heterogeneity and embrittlement behavior in metallic glasses. Li W; Gao Y; Bei H Sci Rep; 2015 Oct; 5():14786. PubMed ID: 26435318 [TBL] [Abstract][Full Text] [Related]
14. NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses. Yuan CC; Xiang JF; Xi XK; Wang WH Phys Rev Lett; 2011 Dec; 107(23):236403. PubMed ID: 22182108 [TBL] [Abstract][Full Text] [Related]
15. Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity. Yang W; Liu H; Zhao Y; Inoue A; Jiang K; Huo J; Ling H; Li Q; Shen B Sci Rep; 2014 Aug; 4():6233. PubMed ID: 25167887 [TBL] [Abstract][Full Text] [Related]
16. Making metallic glasses plastic by control of residual stress. Zhang Y; Wang WH; Greer AL Nat Mater; 2006 Nov; 5(11):857-60. PubMed ID: 17041581 [TBL] [Abstract][Full Text] [Related]
17. Extraordinary plasticity of ductile bulk metallic glasses. Chen M; Inoue A; Zhang W; Sakurai T Phys Rev Lett; 2006 Jun; 96(24):245502. PubMed ID: 16907252 [TBL] [Abstract][Full Text] [Related]
18. Ni- and Be-free Zr-based bulk metallic glasses with high glass-forming ability and unusual plasticity. Zhu S; Xie G; Qin F; Wang X; Inoue A J Mech Behav Biomed Mater; 2012 Sep; 13():166-73. PubMed ID: 22898203 [TBL] [Abstract][Full Text] [Related]
19. Thermal rejuvenation in metallic glasses. Saida J; Yamada R; Wakeda M; Ogata S Sci Technol Adv Mater; 2017; 18(1):152-162. PubMed ID: 28458739 [TBL] [Abstract][Full Text] [Related]
20. Critical Analysis of an FeP Empirical Potential Employed to Study the Fracture of Metallic Glasses. He Y; Yi P; Falk ML Phys Rev Lett; 2019 Jan; 122(3):035501. PubMed ID: 30735425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]