BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 25043506)

  • 21. Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling.
    Racinais S; Bishop D; Denis R; Lattier G; Mendez-Villaneuva A; Perrey S
    Med Sci Sports Exerc; 2007 Feb; 39(2):268-74. PubMed ID: 17277590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Knee extensor fatigue developed during high-intensity exercise limits lower-limb power production.
    O'bryan SJ; Billaut F; Taylor JL; Rouffet DM
    J Sports Sci; 2018 May; 36(9):1030-1037. PubMed ID: 28718344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acute ibuprofen ingestion does not attenuate fatigue during maximal intermittent knee extensor or all-out cycling exercise.
    Morgan PT; Vanhatalo A; Bowtell JL; Jones AM; Bailey SJ
    Appl Physiol Nutr Metab; 2019 Feb; 44(2):208-215. PubMed ID: 30096249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of resistive load on performance and surface EMG activity during repeated cycling sprints on a non-isokinetic cycle ergometer.
    Matsuura R; Arimitsu T; Yunoki T; Yano T
    Br J Sports Med; 2011 Aug; 45(10):820-4. PubMed ID: 19952377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fatigue after short (100-m), medium (200-m) and long (400-m) treadmill sprints.
    Tomazin K; Morin JB; Strojnik V; Podpecan A; Millet GY
    Eur J Appl Physiol; 2012 Mar; 112(3):1027-36. PubMed ID: 21735216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arm-cycling sprints induce neuromuscular fatigue of the elbow flexors and alter corticospinal excitability of the biceps brachii.
    Pearcey GE; Bradbury-Squires DJ; Monks M; Philpott D; Power KE; Button DC
    Appl Physiol Nutr Metab; 2016 Feb; 41(2):199-209. PubMed ID: 26799694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuromuscular fatigue during high-intensity intermittent exercise in individuals with intellectual disability.
    Borji R; Sahli S; Zarrouk N; Zghal F; Rebai H
    Res Dev Disabil; 2013 Dec; 34(12):4477-84. PubMed ID: 24139713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Central fatigue contributes to the greater reductions in explosive than maximal strength with high-intensity fatigue.
    Buckthorpe M; Pain MT; Folland JP
    Exp Physiol; 2014 Jul; 99(7):964-73. PubMed ID: 24728678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuromuscular fatigue during a prolonged intermittent exercise: Application to tennis.
    Girard O; Lattier G; Maffiuletti NA; Micallef JP; Millet GP
    J Electromyogr Kinesiol; 2008 Dec; 18(6):1038-46. PubMed ID: 17611122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in central and peripheral neuromuscular fatigue indices after concentric versus eccentric contractions of the knee extensors.
    Souron R; Nosaka K; Jubeau M
    Eur J Appl Physiol; 2018 Apr; 118(4):805-816. PubMed ID: 29411127
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neuromuscular Fatigue and Metabolism during High-Intensity Intermittent Exercise.
    Fiorenza M; Hostrup M; Gunnarsson TP; Shirai Y; Schena F; Iaia FM; Bangsbo J
    Med Sci Sports Exerc; 2019 Aug; 51(8):1642-1652. PubMed ID: 30817710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxygenation time course and neuromuscular fatigue during repeated cycling sprints with bilateral blood flow restriction.
    Willis SJ; Alvarez L; Borrani F; Millet GP
    Physiol Rep; 2018 Sep; 6(19):e13872. PubMed ID: 30295004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of passive versus active recovery on power output over six repeated wingate sprints.
    Lopez EI; Smoliga JM; Zavorsky GS
    Res Q Exerc Sport; 2014 Dec; 85(4):519-26. PubMed ID: 25412134
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuromuscular Fatigue of Cycling Exercise in Hypoxia.
    Mira J; Floreani M; Savoldelli A; Amery K; Koral J; Oranchuk DJ; Messonnier LA; Rupp T; Millet GY
    Med Sci Sports Exerc; 2020 Sep; 52(9):1888-1899. PubMed ID: 32175975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of neuromuscular adjustments associated with sustained isometric contractions of four different muscle groups.
    Neyroud D; Rüttimann J; Mannion AF; Millet GY; Maffiuletti NA; Kayser B; Place N
    J Appl Physiol (1985); 2013 May; 114(10):1426-34. PubMed ID: 23471948
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuromuscular fatigue induced by an isotonic heavy-resistance loading protocol in knee extensors.
    Walker S; Peltonen J; Ahtiainen JP; Avela J; Hakkinen K
    J Sports Sci; 2009 Oct; 27(12):1271-9. PubMed ID: 19757297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuromuscular fatigue during a long-duration cycling exercise.
    Lepers R; Maffiuletti NA; Rochette L; Brugniaux J; Millet GY
    J Appl Physiol (1985); 2002 Apr; 92(4):1487-93. PubMed ID: 11896014
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Central and peripheral contributions to fatigue after electrostimulation training.
    Gondin J; Guette M; Jubeau M; Ballay Y; Martin A
    Med Sci Sports Exerc; 2006 Jun; 38(6):1147-56. PubMed ID: 16775557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Central and peripheral muscle fatigue following repeated-sprint running in moderate and severe hypoxia.
    Townsend N; Brocherie F; Millet GP; Girard O
    Exp Physiol; 2021 Jan; 106(1):126-138. PubMed ID: 32557892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A method for assessing muscle fatigue during sprint exercise in humans using a friction-loaded cycle ergometer.
    Hautier CA; Belli A; Lacour JR
    Eur J Appl Physiol Occup Physiol; 1998 Aug; 78(3):231-5. PubMed ID: 9721001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.