BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25043556)

  • 1. Dependence of pulsed focused ultrasound induced thrombolysis on duty cycle and cavitation bubble size distribution.
    Xu S; Zong Y; Feng Y; Liu R; Liu X; Hu Y; Han S; Wan M
    Ultrason Sonochem; 2015 Jan; 22():160-6. PubMed ID: 25043556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ultrasound-induced inertial cavitation on enzymatic thrombolysis.
    Chuang YH; Cheng PW; Chen SC; Ruan JL; Li PC
    Ultrason Imaging; 2010 Apr; 32(2):81-90. PubMed ID: 20687276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Histotripsy and Bubble Coalescence Transducer for Thrombolysis.
    Shi A; Lundt J; Deng Z; Macoskey J; Gurm H; Owens G; Zhang X; Hall TL; Xu Z
    Ultrasound Med Biol; 2018 Dec; 44(12):2697-2709. PubMed ID: 30279032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.
    Xu S; Zong Y; Li W; Zhang S; Wan M
    Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of optimal seed bubble size on pressure amplitude at therapeutic pressure levels.
    Carvell KJ; Bigelow TA
    Ultrasonics; 2011 Feb; 51(2):115-22. PubMed ID: 20656313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced clot debris size in sonothrombolysis assisted with phase-change nanodroplets.
    Guo S; Guo X; Wang X; Zhou D; Du X; Han M; Zong Y; Wan M
    Ultrason Sonochem; 2019 Jun; 54():183-191. PubMed ID: 30773494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of cavitation with ultrasound enhancement of thrombolysis.
    Datta S; Coussios CC; McAdory LE; Tan J; Porter T; De Courten-Myers G; Holland CK
    Ultrasound Med Biol; 2006 Aug; 32(8):1257-67. PubMed ID: 16875959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro Evaluation of Focused Ultrasound-Enhanced TNK-Tissue Plasminogen Activator-Mediated Thrombolysis.
    Papadopoulos N; Damianou C
    J Stroke Cerebrovasc Dis; 2016 Aug; 25(8):1864-77. PubMed ID: 27156900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of acoustic parameters on the cavitation behavior of SonoVue microbubbles induced by pulsed ultrasound.
    Lin Y; Lin L; Cheng M; Jin L; Du L; Han T; Xu L; Yu ACH; Qin P
    Ultrason Sonochem; 2017 Mar; 35(Pt A):176-184. PubMed ID: 27707644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pulse repetition frequency of high-intensity focused ultrasound on in vitro thrombolysis.
    Yang W; Zhou Y
    Ultrason Sonochem; 2017 Mar; 35(Pt A):152-160. PubMed ID: 27666197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of ultrasound operating parameters on ultrasound-induced thrombolysis in vitro.
    Schäfer S; Kliner S; Klinghammer L; Kaarmann H; Lucic I; Nixdorff U; Rosenschein U; Daniel WG; Flachskampf FA
    Ultrasound Med Biol; 2005 Jun; 31(6):841-7. PubMed ID: 15936499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining radiation force with cavitation for enhanced sonothrombolysis.
    Chuang YH; Cheng PW; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):97-104. PubMed ID: 23287916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sonothrombolysis with Magnetically Targeted Microbubbles.
    de Saint Victor M; Barnsley LC; Carugo D; Owen J; Coussios CC; Stride E
    Ultrasound Med Biol; 2019 May; 45(5):1151-1163. PubMed ID: 30773375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system.
    Desjouy C; Poizat A; Gilles B; Inserra C; Bera JC
    J Acoust Soc Am; 2013 Aug; 134(2):1640-6. PubMed ID: 23927204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive thrombolysis using pulsed ultrasound cavitation therapy - histotripsy.
    Maxwell AD; Cain CA; Duryea AP; Yuan L; Gurm HS; Xu Z
    Ultrasound Med Biol; 2009 Dec; 35(12):1982-94. PubMed ID: 19854563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Analysis of Sonothrombolysis and Cavitation for Retracted and Unretracted Clots Using Microbubbles Versus Low-Boiling-Point Nanodroplets.
    Kim J; Bautista KJB; Deruiter RM; Goel L; Jiang X; Xu Z; Dayton PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):711-719. PubMed ID: 34932475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation Between Brain Tissue Damage and Inertial Cavitation Dose Quantified Using Passive Cavitation Imaging.
    Xu S; Ye D; Wan L; Shentu Y; Yue Y; Wan M; Chen H
    Ultrasound Med Biol; 2019 Oct; 45(10):2758-2766. PubMed ID: 31378549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparison of Sonothrombolysis in Aged Clots between Low-Boiling-Point Phase-Change Nanodroplets and Microbubbles of the Same Composition.
    Kim J; DeRuiter RM; Goel L; Xu Z; Jiang X; Dayton PA
    Ultrasound Med Biol; 2020 Nov; 46(11):3059-3068. PubMed ID: 32800631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound and Intra-Clot Microbubbles Enhanced Catheter-Directed Thrombolysis in Vitro and in Vivo.
    Gao S; Zhu Q; Guo M; Gao Y; Dong X; Chen Z; Liu Z; Xie F
    Ultrasound Med Biol; 2017 Aug; 43(8):1671-1678. PubMed ID: 28479088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis.
    Soltani A; Volz KR; Hansmann DR
    Phys Med Biol; 2008 Dec; 53(23):6837-47. PubMed ID: 19001697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.