BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 25043676)

  • 1. Dynamics of nascent and active zone ultrastructure as synapses enlarge during long-term potentiation in mature hippocampus.
    Bell ME; Bourne JN; Chirillo MA; Mendenhall JM; Kuwajima M; Harris KM
    J Comp Neurol; 2014 Dec; 522(17):3861-84. PubMed ID: 25043676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic ultrastructural plasticity along CA3→CA1 axons during long-term potentiation in mature hippocampus.
    Bourne JN; Chirillo MA; Harris KM
    J Comp Neurol; 2013 Dec; 521(17):3898-912. PubMed ID: 23784793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LTP enhances synaptogenesis in the developing hippocampus.
    Watson DJ; Ostroff L; Cao G; Parker PH; Smith H; Harris KM
    Hippocampus; 2016 May; 26(5):560-76. PubMed ID: 26418237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dense core vesicles resemble active-zone transport vesicles and are diminished following synaptogenesis in mature hippocampal slices.
    Sorra KE; Mishra A; Kirov SA; Harris KM
    Neuroscience; 2006 Sep; 141(4):2097-106. PubMed ID: 16797135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shortened tethering filaments stabilize presynaptic vesicles in support of elevated release probability during LTP in rat hippocampus.
    Jung JH; Kirk LM; Bourne JN; Harris KM
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33875591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus.
    Lushnikova I; Skibo G; Muller D; Nikonenko I
    Hippocampus; 2009 Aug; 19(8):753-62. PubMed ID: 19156853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple roles of afadin in the ultrastructural morphogenesis of mouse hippocampal mossy fiber synapses.
    Sai K; Wang S; Kaito A; Fujiwara T; Maruo T; Itoh Y; Miyata M; Sakakibara S; Miyazaki N; Murata K; Yamaguchi Y; Haruta T; Nishioka H; Motojima Y; Komura M; Kimura K; Mandai K; Takai Y; Mizoguchi A
    J Comp Neurol; 2017 Aug; 525(12):2719-2734. PubMed ID: 28498492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolonged ampakine exposure prunes dendritic spines and increases presynaptic release probability for enhanced long-term potentiation in the hippocampus.
    Chang PK; Prenosil GA; Verbich D; Gill R; McKinney RA
    Eur J Neurosci; 2014 Sep; 40(5):2766-76. PubMed ID: 24925283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory synapse dynamics: coordinated presynaptic and postsynaptic mobility and the major contribution of recycled vesicles to new synapse formation.
    Dobie FA; Craig AM
    J Neurosci; 2011 Jul; 31(29):10481-93. PubMed ID: 21775594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses.
    Tyler WJ; Pozzo-Miller LD
    J Neurosci; 2001 Jun; 21(12):4249-58. PubMed ID: 11404410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA1.
    Sorra KE; Harris KM
    J Neurosci; 1998 Jan; 18(2):658-71. PubMed ID: 9425008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional redistribution of AMPA but not NMDA receptors after perforant path simulation in the adult rat hippocampus in vivo.
    Moga DE; Shapiro ML; Morrison JH
    Hippocampus; 2006; 16(11):990-1003. PubMed ID: 17039486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. More Docked Vesicles and Larger Active Zones at Basket Cell-to-Granule Cell Synapses in a Rat Model of Temporal Lobe Epilepsy.
    Buckmaster PS; Yamawaki R; Thind K
    J Neurosci; 2016 Mar; 36(11):3295-308. PubMed ID: 26985038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the anoxia-induced long-term synaptic potentiation in area CA1 of the rat hippocampus.
    Hsu KS; Huang CC
    Br J Pharmacol; 1997 Oct; 122(4):671-81. PubMed ID: 9375963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural Correlates of Presynaptic Functional Heterogeneity in Hippocampal Synapses.
    Maus L; Lee C; Altas B; Sertel SM; Weyand K; Rizzoli SO; Rhee J; Brose N; Imig C; Cooper BH
    Cell Rep; 2020 Mar; 30(11):3632-3643.e8. PubMed ID: 32187536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices.
    Ostroff LE; Fiala JC; Allwardt B; Harris KM
    Neuron; 2002 Aug; 35(3):535-45. PubMed ID: 12165474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala.
    Gryder DS; Castaneda DC; Rogawski MA
    J Neurochem; 2005 Sep; 94(6):1728-38. PubMed ID: 16045445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP.
    Bourne JN; Harris KM
    Hippocampus; 2011 Apr; 21(4):354-73. PubMed ID: 20101601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synapse-specific structural plasticity that protects and refines local circuits during LTP and LTD.
    Harris KM; Kuwajima M; Flores JC; Zito K
    Philos Trans R Soc Lond B Biol Sci; 2024 Jul; 379(1906):20230224. PubMed ID: 38853547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically induced long-term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices.
    Stewart MG; Medvedev NI; Popov VI; Schoepfer R; Davies HA; Murphy K; Dallérac GM; Kraev IV; Rodríguez JJ
    Eur J Neurosci; 2005 Jun; 21(12):3368-78. PubMed ID: 16026474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.