These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 25043943)

  • 1. Expansion of the APC superfamily of secondary carriers.
    Vastermark A; Wollwage S; Houle ME; Rio R; Saier MH
    Proteins; 2014 Oct; 82(10):2797-811. PubMed ID: 25043943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary relationship between 5+5 and 7+7 inverted repeat folds within the amino acid-polyamine-organocation superfamily.
    Västermark Å; Saier MH
    Proteins; 2014 Feb; 82(2):336-46. PubMed ID: 24038584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resculpting the binding pocket of APC superfamily LeuT-fold amino acid transporters.
    Edwards N; Anderson CMH; Conlon NJ; Watson AK; Hall RJ; Cheek TR; Embley TM; Thwaites DT
    Cell Mol Life Sci; 2018 Mar; 75(5):921-938. PubMed ID: 29058016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The amino acid-polyamine-organocation superfamily.
    Wong FH; Chen JS; Reddy V; Day JL; Shlykov MA; Wakabayashi ST; Saier MH
    J Mol Microbiol Biotechnol; 2012; 22(2):105-13. PubMed ID: 22627175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling and mutational evidence identify the substrate binding site and functional elements in APC amino acid transporters.
    Vangelatos I; Vlachakis D; Sophianopoulou V; Diallinas G
    Mol Membr Biol; 2009 Aug; 26(5):356-70. PubMed ID: 19670073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations.
    Jack DL; Paulsen IT; Saier MH
    Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():1797-1814. PubMed ID: 10931886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and mechanism of an amino acid antiporter.
    Gao X; Lu F; Zhou L; Dang S; Sun L; Li X; Wang J; Shi Y
    Science; 2009 Jun; 324(5934):1565-8. PubMed ID: 19478139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Projection structure of a member of the amino acid/polyamine/organocation transporter superfamily.
    Casagrande F; Ratera M; Schenk AD; Chami M; Valencia E; Lopez JM; Torrents D; Engel A; Palacin M; Fotiadis D
    J Biol Chem; 2008 Nov; 283(48):33240-8. PubMed ID: 18819925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of pH-dependent substrate transport by an arginine-agmatine antiporter.
    Wang S; Yan R; Zhang X; Chu Q; Shi Y
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):12734-9. PubMed ID: 25136114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The major facilitator superfamily (MFS) revisited.
    Reddy VS; Shlykov MA; Castillo R; Sun EI; Saier MH
    FEBS J; 2012 Jun; 279(11):2022-35. PubMed ID: 22458847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhizobium leguminosarum has a second general amino acid permease with unusually broad substrate specificity and high similarity to branched-chain amino acid transporters (Bra/LIV) of the ABC family.
    Hosie AH; Allaway D; Galloway CS; Dunsby HA; Poole PS
    J Bacteriol; 2002 Aug; 184(15):4071-80. PubMed ID: 12107123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BtsT, a Novel and Specific Pyruvate/H
    Kristoficova I; Vilhena C; Behr S; Jung K
    J Bacteriol; 2018 Jan; 200(2):. PubMed ID: 29061664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of substrate recognition and transport by an amino acid antiporter.
    Gao X; Zhou L; Jiao X; Lu F; Yan C; Zeng X; Wang J; Shi Y
    Nature; 2010 Feb; 463(7282):828-32. PubMed ID: 20090677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of evolutionary conservation of function between the thyroxine transporter Oatp1c1 and major facilitator superfamily members.
    Westholm DE; Marold JD; Viken KJ; Duerst AH; Anderson GW; Rumbley JN
    Endocrinology; 2010 Dec; 151(12):5941-51. PubMed ID: 20881245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and mechanism of a Na+-independent amino acid transporter.
    Shaffer PL; Goehring A; Shankaranarayanan A; Gouaux E
    Science; 2009 Aug; 325(5943):1010-4. PubMed ID: 19608859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary Active Transporters.
    Bosshart PD; Fotiadis D
    Subcell Biochem; 2019; 92():275-299. PubMed ID: 31214990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cation/Ca(2+) exchanger superfamily: phylogenetic analysis and structural implications.
    Cai X; Lytton J
    Mol Biol Evol; 2004 Sep; 21(9):1692-703. PubMed ID: 15163769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. YjeH Is a Novel Exporter of l-Methionine and Branched-Chain Amino Acids in Escherichia coli.
    Liu Q; Liang Y; Zhang Y; Shang X; Liu S; Wen J; Wen T
    Appl Environ Microbiol; 2015 Nov; 81(22):7753-66. PubMed ID: 26319875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishing homology between mitochondrial calcium uniporters, prokaryotic magnesium channels and chlamydial IncA proteins.
    Lee A; Vastermark A; Saier MH
    Microbiology (Reading); 2014 Aug; 160(Pt 8):1679-1689. PubMed ID: 24869855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topological and segmental phylogenetic analyses of the anion exchanger (band 3) family of transporters.
    Espanol MJ; Saier MH
    Mol Membr Biol; 1995; 12(2):193-200. PubMed ID: 7795710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.