These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 25044223)
21. Protein unties the pseudoknot: S1-mediated unfolding of RNA higher order structure. Lund PE; Chatterjee S; Daher M; Walter NG Nucleic Acids Res; 2020 Feb; 48(4):2107-2125. PubMed ID: 31832686 [TBL] [Abstract][Full Text] [Related]
22. A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures. Jabbari H; Condon A BMC Bioinformatics; 2014 May; 15():147. PubMed ID: 24884954 [TBL] [Abstract][Full Text] [Related]
23. RNA pseudoknots and the regulation of protein synthesis. Brierley I; Gilbert RJ; Pennell S Biochem Soc Trans; 2008 Aug; 36(Pt 4):684-9. PubMed ID: 18631140 [TBL] [Abstract][Full Text] [Related]
24. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Hajdin CE; Bellaousov S; Huggins W; Leonard CW; Mathews DH; Weeks KM Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5498-503. PubMed ID: 23503844 [TBL] [Abstract][Full Text] [Related]
25. Equilibrium unfolding (folding) pathway of a model H-type pseudoknotted RNA: the role of magnesium ions in stability. Nixon PL; Giedroc DP Biochemistry; 1998 Nov; 37(46):16116-29. PubMed ID: 9819204 [TBL] [Abstract][Full Text] [Related]
26. Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure. Suddala KC; Rinaldi AJ; Feng J; Mustoe AM; Eichhorn CD; Liberman JA; Wedekind JE; Al-Hashimi HM; Brooks CL; Walter NG Nucleic Acids Res; 2013 Dec; 41(22):10462-75. PubMed ID: 24003028 [TBL] [Abstract][Full Text] [Related]
27. Translational repression by the bacteriophage T4 gene 32 protein involves specific recognition of an RNA pseudoknot structure. Shamoo Y; Tam A; Konigsberg WH; Williams KR J Mol Biol; 1993 Jul; 232(1):89-104. PubMed ID: 8331672 [TBL] [Abstract][Full Text] [Related]
28. antaRNA--Multi-objective inverse folding of pseudoknot RNA using ant-colony optimization. Kleinkauf R; Houwaart T; Backofen R; Mann M BMC Bioinformatics; 2015 Nov; 16():389. PubMed ID: 26581440 [TBL] [Abstract][Full Text] [Related]
29. NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA. Kolk MH; van der Graaf M; Wijmenga SS; Pleij CW; Heus HA; Hilbers CW Science; 1998 Apr; 280(5362):434-8. PubMed ID: 9545221 [TBL] [Abstract][Full Text] [Related]
30. Mg(2+) shifts ligand-mediated folding of a riboswitch from induced-fit to conformational selection. Suddala KC; Wang J; Hou Q; Walter NG J Am Chem Soc; 2015 Nov; 137(44):14075-83. PubMed ID: 26471732 [TBL] [Abstract][Full Text] [Related]
31. Fast folding of RNA pseudoknots initiated by laser temperature-jump. Narayanan R; Velmurugu Y; Kuznetsov SV; Ansari A J Am Chem Soc; 2011 Nov; 133(46):18767-74. PubMed ID: 21958201 [TBL] [Abstract][Full Text] [Related]
32. A procedure for RNA pseudoknot prediction. Chen JH; Le SY; Maizel JV Comput Appl Biosci; 1992 Jun; 8(3):243-8. PubMed ID: 1378773 [TBL] [Abstract][Full Text] [Related]
33. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site. Wang Y; Wills NM; Du Z; Rangan A; Atkins JF; Gesteland RF; Hoffman DW RNA; 2002 Aug; 8(8):981-96. PubMed ID: 12212853 [TBL] [Abstract][Full Text] [Related]
34. Characterization of the mechanical unfolding of RNA pseudoknots. Green L; Kim CH; Bustamante C; Tinoco I J Mol Biol; 2008 Jan; 375(2):511-28. PubMed ID: 18021801 [TBL] [Abstract][Full Text] [Related]
36. Cooperativity, allostery and synergism in ligand binding to riboswitches. Peselis A; Gao A; Serganov A Biochimie; 2015 Oct; 117():100-9. PubMed ID: 26143008 [TBL] [Abstract][Full Text] [Related]
37. ENTRNA: a framework to predict RNA foldability. Su C; Weir JD; Zhang F; Yan H; Wu T BMC Bioinformatics; 2019 Jul; 20(1):373. PubMed ID: 31269893 [TBL] [Abstract][Full Text] [Related]
38. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Haller A; Soulière MF; Micura R Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902 [TBL] [Abstract][Full Text] [Related]
39. Role of lysine binding residues in the global folding of the lysC riboswitch. Smith-Peter E; Lamontagne AM; Lafontaine DA RNA Biol; 2015; 12(12):1372-82. PubMed ID: 26403229 [TBL] [Abstract][Full Text] [Related]
40. The computer simulation of RNA folding involving pseudoknot formation. Gultyaev AP Nucleic Acids Res; 1991 May; 19(9):2489-94. PubMed ID: 1710358 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]