These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25044387)

  • 1. Bioengineered vascular scaffolds: the state of the art.
    Palumbo VD; Bruno A; Tomasello G; Damiano G; Lo Monte AI
    Int J Artif Organs; 2014 Jul; 37(7):503-12. PubMed ID: 25044387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomaterials for vascular tissue engineering.
    Ravi S; Chaikof EL
    Regen Med; 2010 Jan; 5(1):107-20. PubMed ID: 20017698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymeric materials for tissue engineering of arterial substitutes.
    Ravi S; Qu Z; Chaikof EL
    Vascular; 2009; 17 Suppl 1(Suppl 1):S45-54. PubMed ID: 19426609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach.
    Ercolani E; Del Gaudio C; Bianco A
    J Tissue Eng Regen Med; 2015 Aug; 9(8):861-88. PubMed ID: 23365048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Biomaterials and vascular grafts].
    Xiang P; Li M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec; 27(6):1420-4. PubMed ID: 21375008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioengineered vascular access maintains structural integrity in response to arteriovenous flow and repeated needle puncture.
    Tillman BW; Yazdani SK; Neff LP; Corriere MA; Christ GJ; Soker S; Atala A; Geary RL; Yoo JJ
    J Vasc Surg; 2012 Sep; 56(3):783-93. PubMed ID: 22917043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaffolds and Cell-Based Tissue Engineering for Blood Vessel Therapy.
    Hsia K; Yao CL; Chen WM; Chen JH; Lee H; Lu JH
    Cells Tissues Organs; 2016; 202(5-6):281-295. PubMed ID: 27548610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun small-diameter polyurethane vascular grafts: ingrowth and differentiation of vascular-specific host cells.
    Bergmeister H; Grasl C; Walter I; Plasenzotti R; Stoiber M; Schreiber C; Losert U; Weigel G; Schima H
    Artif Organs; 2012 Jan; 36(1):54-61. PubMed ID: 21848935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concise review: tissue-engineered vascular grafts for cardiac surgery: past, present, and future.
    Kurobe H; Maxfield MW; Breuer CK; Shinoka T
    Stem Cells Transl Med; 2012 Jul; 1(7):566-71. PubMed ID: 23197861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft.
    Centola M; Rainer A; Spadaccio C; De Porcellinis S; Genovese JA; Trombetta M
    Biofabrication; 2010 Mar; 2(1):014102. PubMed ID: 20811117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Readily available tissue-engineered vascular grafts.
    Dahl SL; Kypson AP; Lawson JH; Blum JL; Strader JT; Li Y; Manson RJ; Tente WE; DiBernardo L; Hensley MT; Carter R; Williams TP; Prichard HL; Dey MS; Begelman KG; Niklason LE
    Sci Transl Med; 2011 Feb; 3(68):68ra9. PubMed ID: 21289273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue factor activity and ECM-related gene expression in human aortic endothelial cells grown on electrospun biohybrid scaffolds.
    Han J; Gerstenhaber JA; Lazarovici P; Lelkes PI
    Biomacromolecules; 2013 May; 14(5):1338-48. PubMed ID: 23560456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Current Status of Tissue-Engineered Vascular Grafts.
    Jaspan VN; Hines GL
    Cardiol Rev; 2015; 23(5):236-9. PubMed ID: 25699981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manufacture and property research of heparin grafted electrospinning PCU artificial vascular scaffolds.
    Li Q; Mu L; Zhang F; Mo Z; Jin C; Qi W
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():854-861. PubMed ID: 28576059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled fabrication of a biological vascular substitute.
    Stitzel J; Liu J; Lee SJ; Komura M; Berry J; Soker S; Lim G; Van Dyke M; Czerw R; Yoo JJ; Atala A
    Biomaterials; 2006 Mar; 27(7):1088-94. PubMed ID: 16131465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular tissue engineering: towards the next generation vascular grafts.
    Naito Y; Shinoka T; Duncan D; Hibino N; Solomon D; Cleary M; Rathore A; Fein C; Church S; Breuer C
    Adv Drug Deliv Rev; 2011 Apr; 63(4-5):312-23. PubMed ID: 21421015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold.
    Tschoeke B; Flanagan TC; Koch S; Harwoko MS; Deichmann T; EllÄ V; Sachweh JS; KellomÄki M; Gries T; Schmitz-Rode T; Jockenhoevel S
    Tissue Eng Part A; 2009 Aug; 15(8):1909-18. PubMed ID: 19125650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model.
    Roh JD; Nelson GN; Brennan MP; Mirensky TL; Yi T; Hazlett TF; Tellides G; Sinusas AJ; Pober JS; Saltzman WM; Kyriakides TR; Breuer CK
    Biomaterials; 2008 Apr; 29(10):1454-63. PubMed ID: 18164056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo applications of electrospun tissue-engineered vascular grafts: a review.
    Rocco KA; Maxfield MW; Best CA; Dean EW; Breuer CK
    Tissue Eng Part B Rev; 2014 Dec; 20(6):628-40. PubMed ID: 24786567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.