These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25044398)

  • 1. Increasing the maximum achievable strain of a covalent polymer gel through the addition of mechanically invisible cross-links.
    Kean ZS; Hawk JL; Lin S; Zhao X; Sijbesma RP; Craig SL
    Adv Mater; 2014 Sep; 26(34):6013-8. PubMed ID: 25044398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly stretchable and tough hydrogels.
    Sun JY; Zhao X; Illeperuma WR; Chaudhuri O; Oh KH; Mooney DJ; Vlassak JJ; Suo Z
    Nature; 2012 Sep; 489(7414):133-6. PubMed ID: 22955625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties derived from phase separation in co-polymer hydrogels.
    Nixon RM; Ten Hove JB; Orozco A; Jenkins ZM; Baenen PC; Wiatt MK; Zuluaga J; Sawyer WG; Angelini TE
    J Mech Behav Biomed Mater; 2015 Mar; 55():286-294. PubMed ID: 26618659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Elastically Stretchable Metal-Organic Framework Laden Hydrogel with Pearl-Net Microstructure and Freezing Resistance through Post-Synthetic Polymerization.
    Xu J; Wu C; Qiu Y; Tang X; Zeng D
    Macromol Rapid Commun; 2020 Mar; 41(6):e1900573. PubMed ID: 32022971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photopolymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility.
    Vermonden T; Fedorovich NE; van Geemen D; Alblas J; van Nostrum CF; Dhert WJ; Hennink WE
    Biomacromolecules; 2008 Mar; 9(3):919-26. PubMed ID: 18288801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniform zwitterionic polymer hydrogels with a nonfouling and functionalizable crosslinker using photopolymerization.
    Carr LR; Zhou Y; Krause JE; Xue H; Jiang S
    Biomaterials; 2011 Oct; 32(29):6893-9. PubMed ID: 21704366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property.
    Bao Z; Xian C; Yuan Q; Liu G; Wu J
    Adv Healthc Mater; 2019 Sep; 8(17):e1900670. PubMed ID: 31364824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheological studies of PLLA-PEO-PLLA triblock copolymer hydrogels.
    Aamer KA; Sardinha H; Bhatia SR; Tew GN
    Biomaterials; 2004 Mar; 25(6):1087-93. PubMed ID: 14615174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printed architected conducting polymer hydrogels.
    Jordan RS; Frye J; Hernandez V; Prado I; Giglio A; Abbasizadeh N; Flores-Martinez M; Shirzad K; Xu B; Hill IM; Wang Y
    J Mater Chem B; 2021 Sep; 9(35):7258-7270. PubMed ID: 34105592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly compressible glass-like supramolecular polymer networks.
    Huang Z; Chen X; O'Neill SJK; Wu G; Whitaker DJ; Li J; McCune JA; Scherman OA
    Nat Mater; 2022 Jan; 21(1):103-109. PubMed ID: 34819661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing injectable, covalently cross-linked hydrogels for biomedical applications.
    Patenaude M; Smeets NM; Hoare T
    Macromol Rapid Commun; 2014 Mar; 35(6):598-617. PubMed ID: 24477984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergic influences of network topologies and associative interactions on the microstructures and bulk performances of hydrogels.
    Tong QB; Du C; Wei Z; Du M; Wu ZL; Zheng Q
    J Mater Chem B; 2021 Dec; 9(48):9863-9873. PubMed ID: 34849519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable nanocomposite hydrogel structures with enhanced mechanical properties prepared by photo-crosslinking solutions of poly(trimethylene carbonate)-poly(ethylene glycol)-poly(trimethylene carbonate) macromonomers and nanoclay particles.
    Sharifi S; Blanquer SB; van Kooten TG; Grijpma DW
    Acta Biomater; 2012 Dec; 8(12):4233-43. PubMed ID: 22995403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Duplicating Dynamic Strain-Stiffening Behavior and Nanomechanics of Biological Tissues in a Synthetic Self-Healing Flexible Network Hydrogel.
    Yan B; Huang J; Han L; Gong L; Li L; Israelachvili JN; Zeng H
    ACS Nano; 2017 Nov; 11(11):11074-11081. PubMed ID: 28956900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle-Polymer Synergies in Nanocomposite Hydrogels: From Design to Application.
    Chen T; Hou K; Ren Q; Chen G; Wei P; Zhu M
    Macromol Rapid Commun; 2018 Nov; 39(21):e1800337. PubMed ID: 30118163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent development and biomedical applications of self-healing hydrogels.
    Wang Y; Adokoh CK; Narain R
    Expert Opin Drug Deliv; 2018 Jan; 15(1):77-91. PubMed ID: 28771375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties.
    Zhao X; Chen X; Yuk H; Lin S; Liu X; Parada G
    Chem Rev; 2021 Apr; 121(8):4309-4372. PubMed ID: 33844906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Nonswellable" hydrogel without mechanical hysteresis.
    Kamata H; Akagi Y; Kayasuga-Kariya Y; Chung UI; Sakai T
    Science; 2014 Feb; 343(6173):873-5. PubMed ID: 24558157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PVA-gelatin hydrogels formed using combined theta-gel and cryo-gel fabrication techniques.
    Charron PN; Braddish TA; Oldinski RA
    J Mech Behav Biomed Mater; 2019 Apr; 92():90-96. PubMed ID: 30665114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically crosslinkable thermosensitive polyphosphazene gels as injectable materials for biomedical applications.
    Potta T; Chun C; Song SC
    Biomaterials; 2009 Oct; 30(31):6178-92. PubMed ID: 19709738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.