These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 25044526)
1. Sodium vanadium oxide: a new material for high-performance symmetric sodium-ion batteries. Hartung S; Bucher N; Nair VS; Ling CY; Wang Y; Hoster HE; Srinivasan M Chemphyschem; 2014 Jul; 15(10):2121-8. PubMed ID: 25044526 [TBL] [Abstract][Full Text] [Related]
2. Microspheric Na2Ti3O7 consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge-discharge rates. Wang W; Yu C; Lin Z; Hou J; Zhu H; Jiao S Nanoscale; 2013 Jan; 5(2):594-9. PubMed ID: 23203161 [TBL] [Abstract][Full Text] [Related]
3. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
4. An ultrastable anode for long-life room-temperature sodium-ion batteries. Yu H; Ren Y; Xiao D; Guo S; Zhu Y; Qian Y; Gu L; Zhou H Angew Chem Int Ed Engl; 2014 Aug; 53(34):8963-9. PubMed ID: 24962822 [TBL] [Abstract][Full Text] [Related]
5. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
6. Towards highly stable storage of sodium ions: a porous Na(3)V(2)(PO(4))(3)/C cathode material for sodium-ion batteries. Shen W; Wang C; Liu H; Yang W Chemistry; 2013 Oct; 19(43):14712-8. PubMed ID: 24014393 [TBL] [Abstract][Full Text] [Related]
7. Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan. Wang D; Bie X; Fu Q; Dixon D; Bramnik N; Hu YS; Fauth F; Wei Y; Ehrenberg H; Chen G; Du F Nat Commun; 2017 Jun; 8():15888. PubMed ID: 28660877 [TBL] [Abstract][Full Text] [Related]
8. Stable anode performance of vanadium oxide hydrate semi-microspheres and their graphene based composite microspheres in sodium-ion batteries. Fei H; Li Z; Feng W; Liu X Dalton Trans; 2015 Jan; 44(1):146-50. PubMed ID: 25357230 [TBL] [Abstract][Full Text] [Related]
9. Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery. Sun R; Wei Q; Li Q; Luo W; An Q; Sheng J; Wang D; Chen W; Mai L ACS Appl Mater Interfaces; 2015 Sep; 7(37):20902-8. PubMed ID: 26328897 [TBL] [Abstract][Full Text] [Related]
10. Vanadium oxychloride/magnesium electrode systems for chloride ion batteries. Gao P; Zhao X; Zhao-Karger Z; Diemant T; Behm RJ; Fichtner M ACS Appl Mater Interfaces; 2014 Dec; 6(24):22430-5. PubMed ID: 25419861 [TBL] [Abstract][Full Text] [Related]
11. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. Su D; Wang G ACS Nano; 2013 Dec; 7(12):11218-26. PubMed ID: 24206168 [TBL] [Abstract][Full Text] [Related]
12. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries. Hu M; Jiang Y; Sun W; Wang H; Jin C; Yan M ACS Appl Mater Interfaces; 2014 Nov; 6(21):19449-55. PubMed ID: 25329758 [TBL] [Abstract][Full Text] [Related]
13. Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Walter M; Zünd T; Kovalenko MV Nanoscale; 2015 May; 7(20):9158-63. PubMed ID: 25941034 [TBL] [Abstract][Full Text] [Related]
14. Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries. Zhou X; Wu G; Wu J; Yang H; Wang J; Gao G Phys Chem Chem Phys; 2014 Mar; 16(9):3973-82. PubMed ID: 24445581 [TBL] [Abstract][Full Text] [Related]
15. Iron-Doped Sodium Vanadium Oxyflurophosphate Cathodes for Sodium-Ion Batteries-Electrochemical Characterization and In Situ Measurements of Heat Generation. Essehli R; Maher K; Amin R; Abouimrane A; Mahmoud A; Muralidharan N; Petla RK; Yahia HB; Belharouak I ACS Appl Mater Interfaces; 2020 Sep; 12(37):41765-41775. PubMed ID: 32809791 [TBL] [Abstract][Full Text] [Related]
16. FeV2S4 as a high capacity electrode material for sodium-ion batteries. Krengel M; Adelhelm P; Klein F; Bensch W Chem Commun (Camb); 2015 Sep; 51(70):13500-3. PubMed ID: 26216336 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of Na(1.25)V(3)O(8) nanobelts with excellent long-term stability for rechargeable lithium-ion batteries. Liang S; Chen T; Pan A; Liu D; Zhu Q; Cao G ACS Appl Mater Interfaces; 2013 Nov; 5(22):11913-7. PubMed ID: 24147642 [TBL] [Abstract][Full Text] [Related]
18. Energetic aqueous rechargeable sodium-ion battery based on Na2 CuFe(CN)6 -NaTi2 (PO4 )3 intercalation chemistry. Wu XY; Sun MY; Shen YF; Qian JF; Cao YL; Ai XP; Yang HX ChemSusChem; 2014 Feb; 7(2):407-11. PubMed ID: 24464957 [TBL] [Abstract][Full Text] [Related]
19. Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study. Park CS; Kim H; Shakoor RA; Yang E; Lim SY; Kahraman R; Jung Y; Choi JW J Am Chem Soc; 2013 Feb; 135(7):2787-92. PubMed ID: 23350583 [TBL] [Abstract][Full Text] [Related]
20. An Amorphous Carbon Nitride Composite Derived from ZIF-8 as Anode Material for Sodium-Ion Batteries. Fan JM; Chen JJ; Zhang Q; Chen BB; Zang J; Zheng MS; Dong QF ChemSusChem; 2015 Jun; 8(11):1856-61. PubMed ID: 25940023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]