These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25044544)

  • 1. Directing stem cell differentiation by changing the molecular mobility of supramolecular surfaces.
    Seo JH; Kakinoki S; Yamaoka T; Yui N
    Adv Healthc Mater; 2015 Jan; 4(2):215-22. PubMed ID: 25044544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of molecular mobility of supramolecular polymer surfaces on fibroblast adhesion.
    Seo JH; Yui N
    Biomaterials; 2013 Jan; 34(1):55-63. PubMed ID: 23079667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyrotaxane-based biointerfaces with dynamic biomaterial functions.
    Arisaka Y; Yui N
    J Mater Chem B; 2019 Apr; 7(13):2123-2129. PubMed ID: 32073570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tethered bone morphogenetic protein-2 onto sulfonated-polyrotaxane based surfaces promotes osteogenic differentiation of MC3T3-E1 cells.
    Arisaka Y; Yui N
    J Biomater Sci Polym Ed; 2017; 28(10-12):974-985. PubMed ID: 28402171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and surface properties of polyrotaxane-containing tri-block copolymers as a design for dynamic biomaterials surfaces.
    Inoue Y; Ye L; Ishihara K; Yui N
    Colloids Surf B Biointerfaces; 2012 Jan; 89():223-7. PubMed ID: 21974908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between molecular mobility, fibrillogenesis of collagen molecules, and the inflammatory response: an experimental study in vitro and in vivo.
    Nam K; Seo JH; Kimura T; Yui N; Kishida A
    J Colloid Interface Sci; 2014 Nov; 433():16-25. PubMed ID: 25112908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The significance of hydrated surface molecular mobility in the control of the morphology of adhering fibroblasts.
    Seo JH; Kakinoki S; Inoue Y; Nam K; Yamaoka T; Ishihara K; Kishida A; Yui N
    Biomaterials; 2013 Apr; 34(13):3206-14. PubMed ID: 23410683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual effect of molecular mobility and functional groups of polyrotaxane surfaces on the fate of mesenchymal stem cells.
    Sekiya-Aoyama R; Arisaka Y; Hakariya M; Masuda H; Iwata T; Yoda T; Yui N
    Biomater Sci; 2021 Feb; 9(3):675-684. PubMed ID: 33559665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platelet responses to dynamic biomaterial surfaces with different poly(ethylene glycol) and polyrotaxane molecular architectures constructed on gold substrates.
    Kakinoki S; Yui N; Yamaoka T
    J Biomater Appl; 2013 Nov; 28(4):544-51. PubMed ID: 23048065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled stimuli-responsive polyrotaxane core-shell particles.
    Tardy BL; Dam HH; Kamphuis MM; Richardson JJ; Caruso F
    Biomacromolecules; 2014 Jan; 15(1):53-9. PubMed ID: 24328262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A large mobility of hydrophilic molecules at the outmost layer controls the protein adsorption and adhering behavior with the actin fiber orientation of human umbilical vein endothelial cells (HUVEC).
    Kakinoki S; Seo JH; Inoue Y; Ishihara K; Yui N; Yamaoka T
    J Biomater Sci Polym Ed; 2013; 24(11):1320-32. PubMed ID: 23796033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobility Tuning of Polyrotaxane Surfaces to Stimulate Myocyte Differentiation.
    Sekiya-Aoyama R; Arisaka Y; Yui N
    Macromol Biosci; 2020 Apr; 20(4):e1900424. PubMed ID: 32058659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobility of the Arg-Gly-Asp ligand on the outermost surface of biomaterials suppresses integrin-mediated mechanotransduction and subsequent cell functions.
    Kakinoki S; Seo JH; Inoue Y; Ishihara K; Yui N; Yamaoka T
    Acta Biomater; 2015 Feb; 13():42-51. PubMed ID: 25463493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glyco-pseudopolyrotaxanes: carbohydrate wheels threaded on a polymer string and their inhibition of bacterial adhesion.
    Kim J; Ahn Y; Park KM; Lee DW; Kim K
    Chemistry; 2010 Oct; 16(40):12168-73. PubMed ID: 20859967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering molecularly mobile polyrotaxane surfaces with heparin-binding EGF-like growth factors for improving hepatocyte functions.
    Arisaka Y; Yui N
    J Biomed Mater Res A; 2019 May; 107(5):1080-1085. PubMed ID: 30720919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of surface molecular chirality on adhesion and differentiation of stem cells.
    Yao X; Hu Y; Cao B; Peng R; Ding J
    Biomaterials; 2013 Dec; 34(36):9001-9. PubMed ID: 23981354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A.
    Ooya T; Eguchi M; Yui N
    J Am Chem Soc; 2003 Oct; 125(43):13016-7. PubMed ID: 14570461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Molecular Structure on the In Vivo Performance of Flexible Rod Polyrotaxanes.
    Collins CJ; Mondjinou Y; Loren B; Torregrosa-Allen S; Simmons CJ; Elzey BD; Ayat N; Lu ZR; Thompson D
    Biomacromolecules; 2016 Sep; 17(9):2777-86. PubMed ID: 27387820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Reorganization and Fibrinogen Adsorption Behaviors on the Polyrotaxane Surfaces Investigated by Sum Frequency Generation Spectroscopy.
    Ge A; Seo JH; Qiao L; Yui N; Ye S
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22709-18. PubMed ID: 26393413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening rat mesenchymal stem cell attachment and differentiation on surface chemistries using plasma polymer gradients.
    Wang PY; Clements LR; Thissen H; Tsai WB; Voelcker NH
    Acta Biomater; 2015 Jan; 11():58-67. PubMed ID: 25246312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.