BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25044612)

  • 21. Preparation of poly(ethylene glycol) hydrogels with different network structures for the application of enzyme immobilization.
    Choi D; Lee W; Park J; Koh W
    Biomed Mater Eng; 2008; 18(6):345-56. PubMed ID: 19197111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coordinated Membrane Fusion of Proteinosomes by Contact-Induced Hydrogel Self-Healing.
    Wen P; Liu X; Wang L; Li M; Huang Y; Huang X; Mann S
    Small; 2017 Jun; 13(22):. PubMed ID: 28439986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol).
    Loh XJ; Goh SH; Li J
    Biomaterials; 2007 Oct; 28(28):4113-23. PubMed ID: 17573109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biocompatible Diselenide-Containing Protein Hydrogels with Effective Visible-Light-Initiated Self-Healing Properties.
    Liu S; Deng S; Yan T; Zhang X; Tian R; Xu J; Sun H; Yu S; Liu J
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural protein-based hydrogels with high strength and rapid self-recovery.
    Liu Z; Tang Z; Zhu L; Lu S; Chen F; Tang C; Sun H; Yang J; Qin G; Chen Q
    Int J Biol Macromol; 2019 Dec; 141():108-116. PubMed ID: 31479668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parameters in the construction of an immobilized dual enzyme catalyst.
    Bouin JC; Atallah MT; Hultin HO
    Biotechnol Bioeng; 1976 Feb; 18(2):179-87. PubMed ID: 175863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzyme molecules as nanomotors.
    Sengupta S; Dey KK; Muddana HS; Tabouillot T; Ibele ME; Butler PJ; Sen A
    J Am Chem Soc; 2013 Jan; 135(4):1406-14. PubMed ID: 23308365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time optical measurement of biologically relevant thermal damage in tissue-mimicking hydrogels containing bovine serum albumin.
    Nandlall SD; Schiffter HA; Vonhoff S; Bazán-Peregrino M; Arora M; Coussios CC
    Int J Hyperthermia; 2010; 26(5):456-64. PubMed ID: 20569110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical unfolding of protein domains induces shape change in programmed protein hydrogels.
    Khoury LR; Popa I
    Nat Commun; 2019 Nov; 10(1):5439. PubMed ID: 31784506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Auto-catalytic redox polymerisation using nanoceria and glucose oxidase for double network hydrogels.
    Mohammed AA; Pinna A; Li S; Sang T; Jones JR
    J Mater Chem B; 2020 Apr; 8(14):2834-2844. PubMed ID: 32175544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling and characterization of glucose-sensitive hydrogel: effect of Young's modulus.
    Li H; Luo R
    Biosens Bioelectron; 2009 Aug; 24(12):3630-6. PubMed ID: 19523807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BSA-stabilized molecular hydrogels of a hydrophobic compound.
    Li D; Wang H; Kong D; Yang Z
    Nanoscale; 2012 May; 4(10):3047-9. PubMed ID: 22504444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biofunctionalization of α-zirconium phosphate nanosheets: toward rational control of enzyme loading, affinities, activities and structure retention.
    Deshapriya IK; Kim CS; Novak MJ; Kumar CV
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9643-53. PubMed ID: 24853777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repetitive Biomimetic Self-healing of Ca(2+)-Induced Nanocomposite Protein Hydrogels.
    Chen J; Dong Q; Ma X; Fan TH; Lei Y
    Sci Rep; 2016 Aug; 6():30804. PubMed ID: 27545280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2-Ureido-4-pyrimidone-based hydrogels with multiple responses.
    Cui J; Wang D; Koynov K; del Campo A
    Chemphyschem; 2013 Sep; 14(13):2932-8. PubMed ID: 23918634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immobilization and bioactivity of glucose oxidase in hydrogel microspheres formulated by an emulsification-internal gelation-adsorption-polyelectrolyte coating method.
    Liu Q; Rauth AM; Wu XY
    Int J Pharm; 2007 Jul; 339(1-2):148-56. PubMed ID: 17398046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thiolation-Based Protein-Protein Hydrogels for Improved Wound Healing.
    Liu X; Guo Z; Wang J; Shen W; Jia Z; Jia S; Li L; Wang J; Wang L; Li J; Sun Y; Chen Y; Zhang M; Bai J; Wang L; Li X
    Adv Healthc Mater; 2024 Jun; 13(14):e2303824. PubMed ID: 38303578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hierarchical hydrogen bonds directed multi-functional carbon nanotube-based supramolecular hydrogels.
    Du R; Wu J; Chen L; Huang H; Zhang X; Zhang J
    Small; 2014 Apr; 10(7):1387-93. PubMed ID: 24130077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrated Experimental and Modeling Study of Enzymatic Degradation Using Novel Autofluorescent BSA Microspheres.
    Ma X; Li JQ; O'Connell C; Fan TH; Lei Y
    Langmuir; 2018 Jan; 34(1):191-197. PubMed ID: 29256617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of gallium hexacyanoferrate modified carbon ionic liquid paste electrode for sensitive determination of hydrogen peroxide and glucose.
    Haghighi B; Khosravi M; Barati A
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():204-11. PubMed ID: 24857484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.