BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25044737)

  • 1. Application of in operando UV/Vis spectroscopy in lithium-sulfur batteries.
    Patel MU; Dominko R
    ChemSusChem; 2014 Aug; 7(8):2167-75. PubMed ID: 25044737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Li-S battery analyzed by UV/Vis in operando mode.
    Patel MU; Demir-Cakan R; Morcrette M; Tarascon JM; Gaberscek M; Dominko R
    ChemSusChem; 2013 Jul; 6(7):1177-81. PubMed ID: 23749434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution.
    Lee DJ; Agostini M; Park JW; Sun YK; Hassoun J; Scrosati B
    ChemSusChem; 2013 Dec; 6(12):2245-8. PubMed ID: 23943264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes.
    Oh SJ; Lee JK; Yoon WY
    ChemSusChem; 2014 Sep; 7(9):2562-6. PubMed ID: 25066183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction between Lithium Anode and Polysulfide Ions in a Lithium-Sulfur Battery.
    Zheng D; Yang XQ; Qu D
    ChemSusChem; 2016 Sep; 9(17):2348-50. PubMed ID: 27535337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells.
    Chung SH; Manthiram A
    ChemSusChem; 2014 Jun; 7(6):1655-61. PubMed ID: 24700745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse Vulcanization of Sulfur using Natural Dienes as Sustainable Materials for Lithium-Sulfur Batteries.
    Gomez I; Leonet O; Blazquez JA; Mecerreyes D
    ChemSusChem; 2016 Dec; 9(24):3419-3425. PubMed ID: 27910220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte.
    Sun XG; Wang X; Mayes RT; Dai S
    ChemSusChem; 2012 Oct; 5(10):2079-85. PubMed ID: 22847977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components.
    Patel MU; Arčon I; Aquilanti G; Stievano L; Mali G; Dominko R
    Chemphyschem; 2014 Apr; 15(5):894-904. PubMed ID: 24497200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paving the way for using Li₂S batteries.
    Xu R; Zhang X; Yu C; Ren Y; Li JC; Belharouak I
    ChemSusChem; 2014 Sep; 7(9):2457-60. PubMed ID: 25044568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium-sulfur battery applications.
    Zhang B; Xiao M; Wang S; Han D; Song S; Chen G; Meng Y
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13174-82. PubMed ID: 25025228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalized graphene-based cathode for highly reversible lithium-sulfur batteries.
    Kim JW; Ocon JD; Park DW; Lee J
    ChemSusChem; 2014 May; 7(5):1265-73. PubMed ID: 24464910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Study of Ether-Based Electrolytes for Application in Lithium-Sulfur Battery.
    Carbone L; Gobet M; Peng J; Devany M; Scrosati B; Greenbaum S; Hassoun J
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13859-65. PubMed ID: 26057152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effects of mixing sulfone and ionic liquid as safe electrolytes for lithium sulfur batteries.
    Liao C; Guo B; Sun XG; Dai S
    ChemSusChem; 2015 Jan; 8(2):353-60. PubMed ID: 25427945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection.
    Xu WT; Peng HJ; Huang JQ; Zhao CZ; Cheng XB; Zhang Q
    ChemSusChem; 2015 Sep; 8(17):2892-901. PubMed ID: 26079671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries.
    Zhao C; Liu L; Zhao H; Krall A; Wen Z; Chen J; Hurley P; Jiang J; Li Y
    Nanoscale; 2014 Jan; 6(2):882-8. PubMed ID: 24270510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density.
    Kang N; Lin Y; Yang L; Lu D; Xiao J; Qi Y; Cai M
    Nat Commun; 2019 Oct; 10(1):4597. PubMed ID: 31601812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery.
    Li D; Han F; Wang S; Cheng F; Sun Q; Li WC
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2208-13. PubMed ID: 23452385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.
    Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R
    ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfluorinated ionomer-enveloped sulfur cathodes for lithium-sulfur batteries.
    Song J; Choo MJ; Noh H; Park JK; Kim HT
    ChemSusChem; 2014 Dec; 7(12):3341-6. PubMed ID: 25358294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.