These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25044737)

  • 21. The Quest for Polysulfides in Lithium-Sulfur Battery Electrolytes: An Operando Confocal Raman Spectroscopy Study.
    Hannauer J; Scheers J; Fullenwarth J; Fraisse B; Stievano L; Johansson P
    Chemphyschem; 2015 Sep; 16(13):2755-2759. PubMed ID: 26227956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomass-Derived Heteroatom-Doped Carbon Aerogels from a Salt Melt Sol-Gel Synthesis and their Performance in Li-S Batteries.
    Schipper F; Vizintin A; Ren J; Dominko R; Fellinger TP
    ChemSusChem; 2015 Sep; 8(18):3077-83. PubMed ID: 26373362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.
    Zhou G; Yin LC; Wang DW; Li L; Pei S; Gentle IR; Li F; Cheng HM
    ACS Nano; 2013 Jun; 7(6):5367-75. PubMed ID: 23672616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Optical Diagnostic for In Situ Measurements of Lithium Polysulfides in Battery Electrolytes.
    Saqib N; Silva CJ; Maupin CM; Porter JM
    Appl Spectrosc; 2017 Jul; 71(7):1593-1599. PubMed ID: 28145749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stabilized Lithium-Sulfur Batteries by Covalently Binding Sulfur onto the Thiol-Terminated Polymeric Matrices.
    Liu X; Xu N; Qian T; Liu J; Shen X; Yan C
    Small; 2017 Nov; 13(44):. PubMed ID: 28961372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Robust, Water-Based, Functional Binder Framework for High-Energy Lithium-Sulfur Batteries.
    Lacey MJ; Österlund V; Bergfelt A; Jeschull F; Bowden T; Brandell D
    ChemSusChem; 2017 Jul; 10(13):2758-2766. PubMed ID: 28544635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Relationship between the Relative Solvating Power of Electrolytes and Shuttling Effect of Lithium Polysulfides in Lithium-Sulfur Batteries.
    Su CC; He M; Amine R; Chen Z; Amine K
    Angew Chem Int Ed Engl; 2018 Sep; 57(37):12033-12036. PubMed ID: 30066987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement.
    Yu X; Manthiram A
    Phys Chem Chem Phys; 2015 Jan; 17(3):2127-36. PubMed ID: 25484001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Encapsulated monoclinic sulfur for stable cycling of li-s rechargeable batteries.
    Moon S; Jung YH; Jung WK; Jung DS; Choi JW; Kim DK
    Adv Mater; 2013 Dec; 25(45):6547-53. PubMed ID: 24018843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical Thermoelectric Conversion with Polysulfide as Redox Species.
    Liang Y; Hui JK; Yamada T; Kimizuka N
    ChemSusChem; 2019 Sep; 12(17):4014-4020. PubMed ID: 31334607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incorporating Sulfur Inside the Pores of Carbons for Advanced Lithium-Sulfur Batteries: An Electrolysis Approach.
    He B; Li WC; Yang C; Wang SQ; Lu AH
    ACS Nano; 2016 Jan; 10(1):1633-9. PubMed ID: 26736137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hierarchical sulfur-based cathode materials with long cycle life for rechargeable lithium batteries.
    Wang J; Yin L; Jia H; Yu H; He Y; Yang J; Monroe CW
    ChemSusChem; 2014 Feb; 7(2):563-9. PubMed ID: 24155121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries.
    Fu Y; Su YS; Manthiram A
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6046-52. PubMed ID: 23092250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries.
    Guo J; Xu Y; Wang C
    Nano Lett; 2011 Oct; 11(10):4288-94. PubMed ID: 21928817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement of Energy Capacity with Vitamin C Treated Dual-Layered Graphene-Sulfur Cathodes in Lithium-Sulfur Batteries.
    Kim JW; Ocon JD; Kim HS; Lee J
    ChemSusChem; 2015 Sep; 8(17):2754. PubMed ID: 26334768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Solvating Electrolytes for Lithium-Sulfur Batteries.
    Gupta A; Bhargav A; Manthiram A
    Adv Energy Mater; 2019 Feb; 9(6):. PubMed ID: 31807123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries.
    Chen JJ; Zhang Q; Shi YN; Qin LL; Cao Y; Zheng MS; Dong QF
    Phys Chem Chem Phys; 2012 Apr; 14(16):5376-82. PubMed ID: 22382743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.
    Zu C; Manthiram A
    J Phys Chem Lett; 2014 Aug; 5(15):2522-7. PubMed ID: 26277939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cell Concepts of Metal-Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications.
    Medenbach L; Adelhelm P
    Top Curr Chem (Cham); 2017 Sep; 375(5):81. PubMed ID: 28963656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Cable-Shaped Lithium Sulfur Battery.
    Fang X; Weng W; Ren J; Peng H
    Adv Mater; 2016 Jan; 28(3):491-6. PubMed ID: 26585740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.