These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25044766)

  • 1. Selective photoelectrochemical reduction of aqueous CO₂ to CO by solvated electrons.
    Zhang L; Zhu D; Nathanson GM; Hamers RJ
    Angew Chem Int Ed Engl; 2014 Sep; 53(37):9746-50. PubMed ID: 25044766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoemission from diamond films and substrates into water: dynamics of solvated electrons and implications for diamond photoelectrochemistry.
    Hamers RJ; Bandy JA; Zhu D; Zhang L
    Faraday Discuss; 2014; 172():397-411. PubMed ID: 25413482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of N2 reduction to NH3 by aqueous solvated electrons.
    Christianson JR; Zhu D; Hamers RJ; Schmidt JR
    J Phys Chem B; 2014 Jan; 118(1):195-203. PubMed ID: 24320049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction.
    Zhu D; Zhang L; Ruther RE; Hamers RJ
    Nat Mater; 2013 Sep; 12(9):836-41. PubMed ID: 23812128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of Aqueous Solvated Electrons Produced by Photoemission from Solids Using Transient Absorption Measurements.
    Bachman BF; Zhu D; Bandy J; Zhang L; Hamers RJ
    ACS Meas Sci Au; 2022 Feb; 2(1):46-56. PubMed ID: 36785590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO
    Roy N; Hirano Y; Kuriyama H; Sudhagar P; Suzuki N; Katsumata KI; Nakata K; Kondo T; Yuasa M; Serizawa I; Takayama T; Kudo A; Fujishima A; Terashima C
    Sci Rep; 2016 Nov; 6():38010. PubMed ID: 27892544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of solvated electrons (e(aq)-) as promoters of life on earth.
    Getoff N
    In Vivo; 2014; 28(1):61-6. PubMed ID: 24425837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The KCaSrTa5O15 photocatalyst with tungsten bronze structure for water splitting and CO2 reduction.
    Takayama T; Tanabe K; Saito K; Iwase A; Kudo A
    Phys Chem Chem Phys; 2014 Nov; 16(44):24417-22. PubMed ID: 25301205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Total Internal Reflection Absorption Spectroscopy (TIRAS) for the Detection of Solvated Electrons at a Plasma-liquid Interface.
    Delgado HE; Rumbach P; Bartels DM; Go DB
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29443040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Active NaTaO
    Nakanishi H; Iizuka K; Takayama T; Iwase A; Kudo A
    ChemSusChem; 2017 Jan; 10(1):112-118. PubMed ID: 27874269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex.
    Thoi VS; Kornienko N; Margarit CG; Yang P; Chang CJ
    J Am Chem Soc; 2013 Sep; 135(38):14413-24. PubMed ID: 24033186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O(3-x)(OH)y.
    Ghuman KK; Wood TE; Hoch LB; Mims CA; Ozin GA; Singh CV
    Phys Chem Chem Phys; 2015 Jun; 17(22):14623-35. PubMed ID: 25971705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable Aqueous Photoelectrochemical CO2 Reduction by a Cu2 O Dark Cathode with Improved Selectivity for Carbonaceous Products.
    Chang X; Wang T; Zhang P; Wei Y; Zhao J; Gong J
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):8840-5. PubMed ID: 27199242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved photoelectron spectroscopy of solvated electrons in aqueous NaI solution.
    Lübcke A; Buchner F; Heine N; Hertel IV; Schultz T
    Phys Chem Chem Phys; 2010 Nov; 12(43):14629-34. PubMed ID: 20886131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights.
    Cole EB; Lakkaraju PS; Rampulla DM; Morris AJ; Abelev E; Bocarsly AB
    J Am Chem Soc; 2010 Aug; 132(33):11539-51. PubMed ID: 20666494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics and reactivity of trapped electrons on supported ice crystallites.
    Stähler J; Gahl C; Wolf M
    Acc Chem Res; 2012 Jan; 45(1):131-8. PubMed ID: 22185698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Faraday efficiency and mechanism of electrochemical surface reactions: CO
    Hussain J; Jónsson H; Skúlason E
    Faraday Discuss; 2016 Dec; 195():619-636. PubMed ID: 27711818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-Mediated Charge Transfer of Photogenerated Carriers in Diamond.
    Chemin A; Levine I; Rusu M; Vaujour R; Knittel P; Reinke P; Hinrichs K; Unold T; Dittrich T; Petit T
    Small Methods; 2023 Nov; 7(11):e2300423. PubMed ID: 37596059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets.
    Yin G; Nishikawa M; Nosaka Y; Srinivasan N; Atarashi D; Sakai E; Miyauchi M
    ACS Nano; 2015 Feb; 9(2):2111-9. PubMed ID: 25629438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactions of hydrated electrons (H2O)n- with carbon dioxide and molecular oxygen: hydration of the CO2- and O2- ions.
    Balaj OP; Siu CK; Balteanu I; Beyer MK; Bondybey VE
    Chemistry; 2004 Oct; 10(19):4822-30. PubMed ID: 15372683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.