These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25044804)

  • 1. From waste paper basket to solid state and Li-HEC ultracapacitor electrodes: a value added journey for shredded office paper.
    Puthusseri D; Aravindan V; Anothumakkool B; Kurungot S; Madhavi S; Ogale S
    Small; 2014 Nov; 10(21):4395-402. PubMed ID: 25044804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode.
    Wang H; Guan C; Wang X; Fan HJ
    Small; 2015 Mar; 11(12):1470-7. PubMed ID: 25366170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors.
    Sevilla M; Fuertes AB
    ACS Nano; 2014 May; 8(5):5069-78. PubMed ID: 24731137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A High-Energy Density Li-Ion Hybrid Capacitor Fabricated from Bio-Waste Derived Carbon Nanosheets Cathode and Graphite Anode.
    Nanaji K; Pappu S; Anandan S; Rao TN
    Glob Chall; 2022 Oct; 6(10):2200082. PubMed ID: 36275356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass-Derived Electrode for Next Generation Lithium-Ion Capacitors.
    Sennu P; Aravindan V; Ganesan M; Lee YG; Lee YS
    ChemSusChem; 2016 Apr; 9(8):849-54. PubMed ID: 26990699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs).
    Banerjee A; Upadhyay KK; Puthusseri D; Aravindan V; Madhavi S; Ogale S
    Nanoscale; 2014 Apr; 6(8):4387-94. PubMed ID: 24633050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode.
    Hao P; Zhao Z; Tian J; Li H; Sang Y; Yu G; Cai H; Liu H; Wong CP; Umar A
    Nanoscale; 2014 Oct; 6(20):12120-9. PubMed ID: 25201446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New generation "nanohybrid supercapacitor".
    Naoi K; Naoi W; Aoyagi S; Miyamoto J; Kamino T
    Acc Chem Res; 2013 May; 46(5):1075-83. PubMed ID: 22433167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional graphitized carbon nanovesicles for high-performance supercapacitors based on ionic liquids.
    Peng C; Wen Z; Qin Y; Schmidt-Mende L; Li C; Yang S; Shi D; Yang J
    ChemSusChem; 2014 Mar; 7(3):777-84. PubMed ID: 24474720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudocapacitance of TiO
    Que LF; Yu FD; Wang ZB; Gu DM
    Small; 2018 Apr; 14(17):e1704508. PubMed ID: 29611299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-Phenolic Resin Derived Porous Carbon Materials for High-Performance Lithium-Ion Capacitor.
    Cho EC; Chang-Jian CW; Lu CZ; Huang JH; Hsieh TH; Wu NJ; Lee KC; Hsu SC; Weng HC
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors.
    Wang S; Wang R; Zhang Y; Zhang L
    Nanotechnology; 2017 Nov; 28(44):445406. PubMed ID: 28783039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy.
    Wang H; Xu Z; Kohandehghan A; Li Z; Cui K; Tan X; Stephenson TJ; King'ondu CK; Holt CM; Olsen BC; Tak JK; Harfield D; Anyia AO; Mitlin D
    ACS Nano; 2013 Jun; 7(6):5131-41. PubMed ID: 23651213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on High-Value Utilization of Carbon Derived from Tobacco Waste in Supercapacitors.
    Huang Z; Qin C; Wang J; Cao L; Ma Z; Yuan Q; Lin Z; Zhang P
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33807316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.
    Sun F; Gao J; Zhu Y; Pi X; Wang L; Liu X; Qin Y
    Sci Rep; 2017 Feb; 7():40990. PubMed ID: 28155853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes.
    Zhong H; Xu F; Li Z; Fu R; Wu D
    Nanoscale; 2013 Jun; 5(11):4678-82. PubMed ID: 23632802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application.
    Peng H; Ma G; Sun K; Mu J; Zhang Z; Lei Z
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20795-803. PubMed ID: 25372656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.