These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25044879)

  • 1. Functionalized graphene as a gatekeeper for chiral molecules: an alternative concept for chiral separation.
    Hauser AW; Mardirossian N; Panetier JA; Head-Gordon M; Bell AT; Schwerdtfeger P
    Angew Chem Int Ed Engl; 2014 Sep; 53(37):9957-60. PubMed ID: 25044879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral expression at the solid-liquid interface: a joint experimental and theoretical study of the self-assembly of chiral porphyrins on graphite.
    Linares M; Iavicoli P; Psychogyiopoulou K; Beljonne D; De Feyter S; Amabilino DB; Lazzaroni R
    Langmuir; 2008 Sep; 24(17):9566-74. PubMed ID: 18652420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral separation on a model adsorbent with periodic surface heterogeneity.
    Szabelski P; Sholl DS
    J Chem Phys; 2007 Apr; 126(14):144709. PubMed ID: 17444734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended surface chirality for enantiospecific adsorption.
    Szabelski P
    Chemistry; 2008; 14(27):8312-21. PubMed ID: 18645995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral Separation via Molecular Sieving: A Computational Screening of Suitable Functionalizations for Nanoporous Graphene.
    Fruehwirth SM; Meyer R; Hauser AW
    Chemphyschem; 2018 Sep; 19(18):2331-2339. PubMed ID: 29863766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β-Cyclodextrin Functionalized Nanoporous Graphene Oxides for Efficient Resolution of Asparagine Enantiomers.
    Qie F; Guo J; Tu B; Zhao X; Zhang Y; Yan Y
    Chem Asian J; 2018 Oct; 13(19):2812-2817. PubMed ID: 30035364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible formation of chiral polarons in graphene.
    Kandemir BS
    J Phys Condens Matter; 2013 Jan; 25(2):025302. PubMed ID: 23196977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo modeling of chiral adsorption on nanostructured chiral surfaces and slit pores.
    Szabelski P; Panczyk T; Drach M
    Langmuir; 2008 Nov; 24(22):12972-80. PubMed ID: 18942862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Flexible Acetylcholinesterase-Modified Graphene for Chiral Pesticide Sensor.
    Zhang Y; Liu X; Qiu S; Zhang Q; Tang W; Liu H; Guo Y; Ma Y; Guo X; Liu Y
    J Am Chem Soc; 2019 Sep; 141(37):14643-14649. PubMed ID: 31448915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures formed by the chiral assembly of racemic mixtures of enantiomers: iodination products of elaidic and oleic acids.
    Cai Y; Bernasek SL
    J Phys Chem B; 2005 Mar; 109(10):4514-9. PubMed ID: 16851527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimentally engineering the edge termination of graphene nanoribbons.
    Zhang X; Yazyev OV; Feng J; Xie L; Tao C; Chen YC; Jiao L; Pedramrazi Z; Zettl A; Louie SG; Dai H; Crommie MF
    ACS Nano; 2013 Jan; 7(1):198-202. PubMed ID: 23194280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of graphene nanostructures on nanotubes.
    Patra N; Song Y; Král P
    ACS Nano; 2011 Mar; 5(3):1798-804. PubMed ID: 21341759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral separation of racemic phenylglycines in thermolysin crystal: a molecular simulation study.
    Hu Z; Jiang J
    J Phys Chem B; 2009 Dec; 113(48):15851-7. PubMed ID: 19894685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water on graphene surfaces.
    Gordillo MC; Martí J
    J Phys Condens Matter; 2010 Jul; 22(28):284111. PubMed ID: 21399283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene nanoribbon electrical decoupling from metallic substrates.
    Borriello I; Cantele G; Ninno D
    Nanoscale; 2013 Jan; 5(1):291-8. PubMed ID: 23160545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective separation of chiral aromatic amino acids with surface functionalized magnetic nanoparticles.
    Ghosh S; Fang TH; Uddin MS; Hidajat K
    Colloids Surf B Biointerfaces; 2013 May; 105():267-77. PubMed ID: 23384689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion of light adatoms and molecules on the surface of few-layer graphene.
    Schäffel F; Wilson M; Warner JH
    ACS Nano; 2011 Dec; 5(12):9428-41. PubMed ID: 22087879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of defects on graphene through fluorination.
    Xiao J; Meduri P; Chen H; Wang Z; Gao F; Hu J; Feng J; Hu M; Dai S; Brown S; Adcock JL; Deng Z; Liu J; Graff GL; Aksay IA; Zhang JG
    ChemSusChem; 2014 May; 7(5):1295-300. PubMed ID: 24520018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.