These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 25045043)

  • 1. Defective α-Fe2O3(0001): an ab initio study.
    Nguyen MT; Seriani N; Gebauer R
    Chemphyschem; 2014 Oct; 15(14):2930-5. PubMed ID: 25045043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the electronic, structural, and thermodynamic properties of Au supported on α-Fe2O3 surfaces and their interaction with CO.
    Nguyen MT; Farnesi Camellone M; Gebauer R
    J Chem Phys; 2015 Jul; 143(3):034704. PubMed ID: 26203039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fe adsorption on hematite (α-Fe2O3) (0001) and magnetite (Fe3O4) (111) surfaces.
    Pabisiak T; Kiejna A
    J Chem Phys; 2014 Oct; 141(13):134707. PubMed ID: 25296828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio cluster calculations on the electronic structure of oxygen vacancies at the polar ZnO(0001) surface and on the adsorption of H2, CO, and CO2 at these sites.
    Fink K
    Phys Chem Chem Phys; 2006 Apr; 8(13):1482-9. PubMed ID: 16633631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of native point defects in α-Fe2O3: an ab initio study.
    Lee J; Han S
    Phys Chem Chem Phys; 2013 Nov; 15(43):18906-14. PubMed ID: 24092391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water adsorption and O-defect formation on Fe
    Ovcharenko R; Voloshina E; Sauer J
    Phys Chem Chem Phys; 2016 Sep; 18(36):25560-25568. PubMed ID: 27722324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo-driven oxidation of water on α-Fe2O3 surfaces: an ab initio study.
    Nguyen MT; Seriani N; Piccinin S; Gebauer R
    J Chem Phys; 2014 Feb; 140(6):064703. PubMed ID: 24527933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO adsorption on small Aun (n = 1-4) structures supported on hematite. II. Adsorption on the O-rich termination of α-Fe2O3(0001) surface.
    Pabisiak T; Winiarski MJ; Kiejna A
    J Chem Phys; 2016 Jan; 144(4):044705. PubMed ID: 26827226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101).
    Cheng H; Selloni A
    J Chem Phys; 2009 Aug; 131(5):054703. PubMed ID: 19673581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A DFT study of the structures, stabilities and redox behaviour of the major surfaces of magnetite Fe₃O₄.
    Santos-Carballal D; Roldan A; Grau-Crespo R; de Leeuw NH
    Phys Chem Chem Phys; 2014 Oct; 16(39):21082-97. PubMed ID: 24874778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane adsorption and dissociation on iron oxide oxygen carriers: the role of oxygen vacancies.
    Cheng Z; Qin L; Guo M; Fan JA; Xu D; Fan LS
    Phys Chem Chem Phys; 2016 Jun; 18(24):16423-35. PubMed ID: 27265327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferryl (Fe=O) termination of the hematite alpha-Fe2O3(0001) surface.
    Lemire C; Bertarione S; Zecchina A; Scarano D; Chaka A; Shaikhutdinov S; Freund HJ
    Phys Rev Lett; 2005 Apr; 94(16):166101. PubMed ID: 15904247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of atomic and molecular oxygen on the LaMnO3(001) surface: ab initio supercell calculations and thermodynamics.
    Kotomin EA; Mastrikov YA; Heifets E; Maier J
    Phys Chem Chem Phys; 2008 Aug; 10(31):4644-9. PubMed ID: 18665314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water adsorption on the stoichiometric and reduced CeO2(111) surface: a first-principles investigation.
    Fronzi M; Piccinin S; Delley B; Traversa E; Stampfl C
    Phys Chem Chem Phys; 2009 Oct; 11(40):9188-99. PubMed ID: 19812840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption.
    Maimaiti Y; Nolan M; Elliott SD
    Phys Chem Chem Phys; 2014 Feb; 16(7):3036-46. PubMed ID: 24394338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of surface structure, oxygen defects, and hydration in the adsorption of CO(2) on low-index ZnGa(2)O(4) surfaces: a first-principles investigation.
    Jia C; Fan W; Cheng X; Zhao X; Sun H; Li P; Lin N
    Phys Chem Chem Phys; 2014 Apr; 16(16):7538-47. PubMed ID: 24632683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio modeling of Fe(II) adsorption and interfacial electron transfer at goethite (α-FeOOH) surfaces.
    Alexandrov V; Rosso KM
    Phys Chem Chem Phys; 2015 Jun; 17(22):14518-31. PubMed ID: 25968615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction mechanisms for the CO oxidation on Au/CeO(2) catalysts: activity of substitutional Au(3+)/Au(+) cations and deactivation of supported Au(+) adatoms.
    Camellone MF; Fabris S
    J Am Chem Soc; 2009 Aug; 131(30):10473-83. PubMed ID: 19722624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface properties of clean and Au or Pd covered hematite (α-Fe(2)O(3)) (0001).
    Kiejna A; Pabisiak T
    J Phys Condens Matter; 2012 Mar; 24(9):095003. PubMed ID: 22274998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of sulfur dioxide on hematite and goethite particle surfaces.
    Baltrusaitis J; Cwiertny DM; Grassian VH
    Phys Chem Chem Phys; 2007 Nov; 9(41):5542-54. PubMed ID: 17957310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.