BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

573 related articles for article (PubMed ID: 25045131)

  • 1. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed tricalcium phosphate scaffolds: Effect of SrO and MgO doping on
    Tarafder S; Davies NM; Bandyopadhyay A; Bose S
    Biomater Sci; 2013 Dec; 1(12):1250-1259. PubMed ID: 24729867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.
    Tarafder S; Balla VK; Davies NM; Bandyopadhyay A; Bose S
    J Tissue Eng Regen Med; 2013 Aug; 7(8):631-41. PubMed ID: 22396130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of beta-TCP ceramics.
    Banerjee SS; Tarafder S; Davies NM; Bandyopadhyay A; Bose S
    Acta Biomater; 2010 Oct; 6(10):4167-74. PubMed ID: 20493283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model.
    Ke D; Dernell W; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1549-59. PubMed ID: 25504889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding in vivo response and mechanical property variation in MgO, SrO and SiO₂ doped β-TCP.
    Bose S; Tarafder S; Banerjee SS; Davies NM; Bandyopadhyay A
    Bone; 2011 Jun; 48(6):1282-90. PubMed ID: 21419884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds.
    Bose S; Tarafder S; Bandyopadhyay A
    Ann Biomed Eng; 2017 Jan; 45(1):261-272. PubMed ID: 27287311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis
    Gu Y; Zhang J; Zhang X; Liang G; Xu T; Niu W
    Tissue Eng Regen Med; 2019 Aug; 16(4):415-429. PubMed ID: 31413945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZnO, SiO2, and SrO doping in resorbable tricalcium phosphates: Influence on strength degradation, mechanical properties, and in vitro bone-cell material interactions.
    Bandyopadhyay A; Petersen J; Fielding G; Banerjee S; Bose S
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2203-12. PubMed ID: 22997062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium-oxide-enhanced bone regeneration: 3D-printing of gelatin-coated composite scaffolds with sustained Rosuvastatin release.
    Gharibshahian M; Salehi M; Kamalabadi-Farahani M; Alizadeh M
    Int J Biol Macromol; 2024 May; 266(Pt 1):130995. PubMed ID: 38521323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration.
    Zamani Y; Amoabediny G; Mohammadi J; Zandieh-Doulabi B; Klein-Nulend J; Helder MN
    Iran Biomed J; 2021 Mar; 25(2):78-87. PubMed ID: 33461289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of MgO, ZnO, SrO, and SiO
    Ke D; Tarafder S; Vahabzadeh S; Bose S
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():10-19. PubMed ID: 30606515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doped tricalcium phosphate bone tissue engineering scaffolds using sucrose as template and microwave sintering: enhancement of mechanical and biological properties.
    Ke D; Bose S
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():398-404. PubMed ID: 28576001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds.
    Bose S; Banerjee D; Robertson S; Vahabzadeh S
    Ann Biomed Eng; 2018 Sep; 46(9):1241-1253. PubMed ID: 29728785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds.
    Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T
    J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano SiO2 and MgO improve the properties of porous β-TCP scaffolds via advanced manufacturing technology.
    Gao C; Wei P; Feng P; Xiao T; Shuai C; Peng S
    Int J Mol Sci; 2015 Mar; 16(4):6818-30. PubMed ID: 25815597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration.
    He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J
    Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Extrusion-Microdrilling Approach to Fabricate Calcium Phosphate-Based Bioceramic Scaffolds Enabling Fast Bone Regeneration.
    He F; Lu T; Fang X; Feng S; Feng S; Tian Y; Li Y; Zuo F; Deng X; Ye J
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32340-32351. PubMed ID: 32597161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research on sintering process of tricalcium phosphate bone tissue engineering scaffold based on three-dimensional printing].
    Man X; Suo H; Liu J; Xu M; Wang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):112-118. PubMed ID: 32096384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.