BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2504526)

  • 1. Torsional strength of the ankle in vitro. The supination-external-rotation injury.
    Markolf KL; Schmalzried TP; Ferkel RD
    Clin Orthop Relat Res; 1989 Sep; (246):266-72. PubMed ID: 2504526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomechanical investigation of ankle injury under excessive external foot rotation in the human cadaver.
    Wei F; Villwock MR; Meyer EG; Powell JW; Haut RC
    J Biomech Eng; 2010 Sep; 132(9):091001. PubMed ID: 20815635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ankle fractures. The Lauge-Hansen classification revisited.
    Michelson J; Solocoff D; Waldman B; Kendell K; Ahn U
    Clin Orthop Relat Res; 1997 Dec; (345):198-205. PubMed ID: 9418641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new interpretation of the mechanism of ankle fracture.
    Haraguchi N; Armiger RS
    J Bone Joint Surg Am; 2009 Apr; 91(4):821-9. PubMed ID: 19339566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimentally produced ankle fractures in autopsy specimens.
    Stiehl JB; Skrade DA; Johnson RP
    Clin Orthop Relat Res; 1992 Dec; (285):244-9. PubMed ID: 1446445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of augmentation methods for internal fixation of osteoporotic ankle fractures.
    Panchbhavi VK; Vallurupalli S; Morris R
    Foot Ankle Int; 2009 Jul; 30(7):696-703. PubMed ID: 19589319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability-based classification for ankle fracture management and the syndesmosis injury in ankle fractures due to a supination external rotation mechanism of injury.
    Pakarinen H
    Acta Orthop Suppl; 2012 Dec; 83(347):1-26. PubMed ID: 23205893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel flexible suture fixation for the distal tibiofibular syndesmotic joint injury: a cadaveric biomechanical model.
    Gough BE; Chong AC; Howell SJ; Galvin JW; Wooley PH
    J Foot Ankle Surg; 2014; 53(6):706-11. PubMed ID: 24846162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Dynamic gait analysis of blocked distal tibiofibular joint following syndesmotic complex lesions].
    Vasarhelyi A; Lubitz J; Zeh A; Wohlrab D; Hein W; Mittlmeier T
    Z Orthop Unfall; 2009; 147(4):439-44. PubMed ID: 19693740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the syndesmotic staple to the transsyndesmotic screw: a biomechanical study.
    Marqueen T; Owen J; Nicandri G; Wayne J; Carr J
    Foot Ankle Int; 2005 Mar; 26(3):224-30. PubMed ID: 15766425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical comparison of syndesmotic injury fixation methods using a cadaveric model.
    Ebramzadeh E; Knutsen AR; Sangiorgio SN; Brambila M; Harris TG
    Foot Ankle Int; 2013 Dec; 34(12):1710-7. PubMed ID: 24019217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of a novel FiberWire-button construct versus metallic screw fixation in a syndesmotic injury model.
    Forsythe K; Freedman KB; Stover MD; Patwardhan AG
    Foot Ankle Int; 2008 Jan; 29(1):49-54. PubMed ID: 18275736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Posterior fracture-dislocation of the distal part of the fibula. Mechanism and staging of injury.
    Perry CR; Rice S; Rao A; Burdge R
    J Bone Joint Surg Am; 1983 Oct; 65(8):1149-57. PubMed ID: 6630259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of fibular malunion on contact area and stress distribution at the ankle with six simulated loading conditions].
    Yoshimine F
    Nihon Seikeigeka Gakkai Zasshi; 1995 Jul; 69(7):460-9. PubMed ID: 7561348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of fibular malreduction on contact pressures in an ankle fracture malunion model.
    Thordarson DB; Motamed S; Hedman T; Ebramzadeh E; Bakshian S
    J Bone Joint Surg Am; 1997 Dec; 79(12):1809-15. PubMed ID: 9409794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Syndesmosis fixation using dual 3.5 mm and 4.5 mm screws with tricortical and quadricortical purchase: a biomechanical study.
    Markolf KL; Jackson SR; McAllister DR
    Foot Ankle Int; 2013 May; 34(5):734-9. PubMed ID: 23405026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadaveric biomechanical analysis of the distal radioulnar joint: influence of wrist isolation on accurate measurement and the effect of ulnar styloid fracture on stability.
    Mirarchi AJ; Hoyen HA; Knutson J; Lewis S
    J Hand Surg Am; 2008; 33(5):683-90. PubMed ID: 18590851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of manual and gravity stress radiographs for the evaluation of supination-external rotation fibular fractures.
    Gill JB; Risko T; Raducan V; Grimes JS; Schutt RC
    J Bone Joint Surg Am; 2007 May; 89(5):994-9. PubMed ID: 17473136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo rotatory knee stability. Ligamentous and muscular contributions.
    Shoemaker SC; Markolf KL
    J Bone Joint Surg Am; 1982 Feb; 64(2):208-16. PubMed ID: 7056775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fracture-dislocation of the ankle with posterior entrapment of the fibula behind the tibia.
    Mayer PJ; Evarts CM
    J Bone Joint Surg Am; 1978 Apr; 60(3):320-4. PubMed ID: 649635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.