These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25045263)

  • 1. Understanding improved osteoblast behavior on select nanoporous anodic alumina.
    Ni S; Li C; Ni S; Chen T; Webster TJ
    Int J Nanomedicine; 2014; 9():3325-34. PubMed ID: 25045263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the nanostructure of porous alumina on growth behavior of MG63 osteoblast-like cells.
    Song Y; Ju Y; Morita Y; Song G
    J Biosci Bioeng; 2013 Oct; 116(4):509-15. PubMed ID: 23643619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nanostructure effect on the adhesion and growth rates of epithelial cells with well-defined nanoporous alumina substrates.
    Chung SH; Son SJ; Min J
    Nanotechnology; 2010 Mar; 21(12):125104. PubMed ID: 20195010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adhesion and proliferation of osteoblast-like cells on anodic porous alumina substrates with different morphology.
    Salerno M; Caneva-Soumetz F; Pastorino L; Patra N; Diaspro A; Ruggiero C
    IEEE Trans Nanobioscience; 2013 Jun; 12(2):106-11. PubMed ID: 23722279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Ordered Porous Anodic Alumina with Large Diameter Pores Fabricated by an Improved Two-Step Anodization Approach.
    Li X; Ni S; Zhou X
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1725-31. PubMed ID: 26353721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-Pore Size of Alumina Affects Osteoblastic Response.
    Mussano F; Genova T; Serra FG; Carossa M; Munaron L; Carossa S
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29425177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological zeta-potential variation of nanoporous anodic alumina layers and cell adherence.
    Pedimonte BJ; Moest T; Luxbacher T; von Wilmowsky C; Fey T; Schlegel KA; Greil P
    Acta Biomater; 2014 Feb; 10(2):968-74. PubMed ID: 24080316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion.
    Swan EE; Popat KC; Desai TA
    Biomaterials; 2005 May; 26(14):1969-76. PubMed ID: 15576171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced osteogenic fate and function of MC3T3-E1 cells on nanoengineered polystyrene surfaces with nanopillar and nanopore arrays.
    Cha KJ; Hong JM; Cho DW; Kim DS
    Biofabrication; 2013 Jun; 5(2):025007. PubMed ID: 23548407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro proliferation and osteogenic differentiation of mesenchymal stem cells on nanoporous alumina.
    Song Y; Ju Y; Song G; Morita Y
    Int J Nanomedicine; 2013; 8():2745-56. PubMed ID: 23935364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature.
    Chung CK; Zhou RX; Liu TY; Chang WT
    Nanotechnology; 2009 Feb; 20(5):055301. PubMed ID: 19417342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the response of osteoblast-like cells to the porous-alumina-assisted mixed-oxide nano-mound arrays.
    Fohlerova Z; Mozalev A
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1645-1654. PubMed ID: 28837748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces.
    Popat KC; Chatvanichkul KI; Barnes GL; Latempa TJ; Grimes CA; Desai TA
    J Biomed Mater Res A; 2007 Mar; 80(4):955-64. PubMed ID: 17089417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal-like response of N2a living cells to nanoporous patterns of thin supported anodic alumina.
    El Merhie A; Salerno M; Toccafondi C; Dante S
    Colloids Surf B Biointerfaces; 2019 Jun; 178():32-37. PubMed ID: 30825776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture.
    Swan EE; Popat KC; Grimes CA; Desai TA
    J Biomed Mater Res A; 2005 Mar; 72(3):288-95. PubMed ID: 15654700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials.
    Ni S; Li X; Yang P; Ni S; Hong F; Webster TJ
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():700-8. PubMed ID: 26478362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm.
    Sun C; Luo J; Wu L; Zhang J
    ACS Appl Mater Interfaces; 2010 May; 2(5):1299-302. PubMed ID: 20408596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoporous surface wetting behavior: the line tension influence.
    Raspal V; Awitor KO; Massard C; Feschet-Chassot E; Bokalawela RS; Johnson MB
    Langmuir; 2012 Jul; 28(30):11064-71. PubMed ID: 22746264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of nanoporous anodic aluminum oxide on the initial adhesion of Streptococcus mitis and mutans.
    Taxis J; von Wilmowsky C; Pedimonte BJ; Beuscher HU; Ries J; Kesting M; Moest T
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1687-1696. PubMed ID: 31763773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of nanoporous alumina membranes on long-term osteoblast response.
    Popat KC; Leary Swan EE; Mukhatyar V; Chatvanichkul KI; Mor GK; Grimes CA; Desai TA
    Biomaterials; 2005 Aug; 26(22):4516-22. PubMed ID: 15722120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.