These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 25045309)
21. Including dispersion and attenuation directly in the time domain for wave propagation in isotropic media. Norton GV; Novarini JC J Acoust Soc Am; 2003 Jun; 113(6):3024-31. PubMed ID: 12822773 [TBL] [Abstract][Full Text] [Related]
22. A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L). Prieur F; Vilenskiy G; Holm S J Acoust Soc Am; 2012 Oct; 132(4):2169-72. PubMed ID: 23039412 [TBL] [Abstract][Full Text] [Related]
23. Quantum Maps with Memory from Generalized Lindblad Equation. Tarasov VE Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33924949 [TBL] [Abstract][Full Text] [Related]
24. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. Treeby BE; Cox BT J Acoust Soc Am; 2010 May; 127(5):2741-48. PubMed ID: 21117722 [TBL] [Abstract][Full Text] [Related]
25. Nonlinear acoustic wave equations with fractional loss operators. Prieur F; Holm S J Acoust Soc Am; 2011 Sep; 130(3):1125-32. PubMed ID: 21895055 [TBL] [Abstract][Full Text] [Related]
26. Full wave modeling of therapeutic ultrasound: efficient time-domain implementation of the frequency power-law attenuation. Liebler M; Ginter S; Dreyer T; Riedlinger RE J Acoust Soc Am; 2004 Nov; 116(5):2742-50. PubMed ID: 15603120 [TBL] [Abstract][Full Text] [Related]
27. Evolution equation for nonlinear Lucassen waves, with application to a threshold phenomenon. Simon BE; Cormack JM; Hamilton MF J Acoust Soc Am; 2021 Nov; 150(5):3648. PubMed ID: 34852582 [TBL] [Abstract][Full Text] [Related]
28. Wave-induced fluid flow in random porous media: attenuation and dispersion of elastic waves. Müller TM; Gurevich B J Acoust Soc Am; 2005 May; 117(5):2732-41. PubMed ID: 15957744 [TBL] [Abstract][Full Text] [Related]
29. Eulerian derivation of the fractional advection-dispersion equation. Schumer R; Benson DA; Meerschaert MM; Wheatcraft SW J Contam Hydrol; 2001 Mar; 48(1-2):69-88. PubMed ID: 11291482 [TBL] [Abstract][Full Text] [Related]
30. Distributed-order diffusion equations and multifractality: Models and solutions. Sandev T; Chechkin AV; Korabel N; Kantz H; Sokolov IM; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042117. PubMed ID: 26565178 [TBL] [Abstract][Full Text] [Related]
31. Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional order wave equations. Pandey V; Holm S J Acoust Soc Am; 2016 Dec; 140(6):4225. PubMed ID: 28039990 [TBL] [Abstract][Full Text] [Related]
32. Power laws prevail in medical ultrasound. Parker KJ Phys Med Biol; 2022 Apr; 67(9):. PubMed ID: 35366658 [TBL] [Abstract][Full Text] [Related]
33. Correlation Structure of Fractional Pearson Diffusions. Leonenko NN; Meerschaert MM; Sikorskii A Comput Math Appl; 2013 Sep; 66(5):737-745. PubMed ID: 24089586 [TBL] [Abstract][Full Text] [Related]
34. Time-domain simulation of ultrasound propagation with fractional Laplacians for lossy-medium biological tissues with complicated geometries. Zhang J; Zheng ZC; Ke G J Acoust Soc Am; 2019 Jan; 145(1):589. PubMed ID: 30710970 [TBL] [Abstract][Full Text] [Related]
36. Nonlinear acoustic pulse propagation in dispersive sediments using fractional loss operators. Maestas JT; Collis JM J Acoust Soc Am; 2016 Mar; 139(3):1420-9. PubMed ID: 27036279 [TBL] [Abstract][Full Text] [Related]
37. Solitary wave solutions to some nonlinear fractional evolution equations in mathematical physics. Ali HMS; Habib MA; Miah MM; Akbar MA Heliyon; 2020 Apr; 6(4):e03727. PubMed ID: 32322721 [TBL] [Abstract][Full Text] [Related]
38. Traveling wave solution and qualitative behavior of fractional stochastic Kraenkel-Manna-Merle equation in ferromagnetic materials. Luo J Sci Rep; 2024 Jun; 14(1):12990. PubMed ID: 38844779 [TBL] [Abstract][Full Text] [Related]
39. Anomalous Advection-Dispersion Equations within General Fractional-Order Derivatives: Models and Series Solutions. Liang X; Yang YG; Gao F; Yang XJ; Xue Y Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265165 [TBL] [Abstract][Full Text] [Related]
40. Averaging principle for a type of Caputo fractional stochastic differential equations. Guo Z; Hu J; Yuan C Chaos; 2021 May; 31(5):053123. PubMed ID: 34240919 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]