These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 25045309)
41. Integral decomposition for the solutions of the generalized Cattaneo equation. Górska K Phys Rev E; 2021 Aug; 104(2-1):024113. PubMed ID: 34525646 [TBL] [Abstract][Full Text] [Related]
42. Modeling power law absorption and dispersion in viscoelastic solids using a split-field and the fractional Laplacian. Treeby BE; Cox BT J Acoust Soc Am; 2014 Oct; 136(4):1499-510. PubMed ID: 25324054 [TBL] [Abstract][Full Text] [Related]
43. Can a Time Fractional-Derivative Model Capture Scale-Dependent Dispersion in Saturated Soils? Garrard RM; Zhang Y; Wei S; Sun H; Qian J Ground Water; 2017 Nov; 55(6):857-870. PubMed ID: 28692785 [TBL] [Abstract][Full Text] [Related]
45. A space-time spectral collocation algorithm for the variable order fractional wave equation. Bhrawy AH; Doha EH; Alzaidy JF; Abdelkawy MA Springerplus; 2016; 5(1):1220. PubMed ID: 27536504 [TBL] [Abstract][Full Text] [Related]
46. Obtaining the soliton solutions of local M-fractional magneto-electro-elastic media. Ozdemir N; Secer A; Ozisik M; Bayram M Heliyon; 2023 Jan; 9(1):e13015. PubMed ID: 36711318 [TBL] [Abstract][Full Text] [Related]
47. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. Chen W; Holm S J Acoust Soc Am; 2004 Apr; 115(4):1424-30. PubMed ID: 15101619 [TBL] [Abstract][Full Text] [Related]
49. Wave equations for porous media described by the Biot model. Chandrasekaran SN; Näsholm SP; Holm S J Acoust Soc Am; 2022 Apr; 151(4):2576. PubMed ID: 35461498 [TBL] [Abstract][Full Text] [Related]
50. Fundamental solutions for semidiscrete evolution equations via Banach algebras. González-Camus J; Lizama C; Miana PJ Adv Differ Equ; 2021; 2021(1):35. PubMed ID: 33437298 [TBL] [Abstract][Full Text] [Related]
51. A note on the continuity for Caputo fractional stochastic differential equations. Wang W; Cheng S; Guo Z; Yan X Chaos; 2020 Jul; 30(7):073106. PubMed ID: 32752624 [TBL] [Abstract][Full Text] [Related]
52. Explicit Lump Solitary Wave of Certain Interesting (3+1)-Dimensional Waves in Physics via Some Recent Traveling Wave Methods. Khater MMA; Attia RAM; Lu D Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267111 [TBL] [Abstract][Full Text] [Related]
53. A causal and fractional all-frequency wave equation for lossy media. Holm S; Näsholm SP J Acoust Soc Am; 2011 Oct; 130(4):2195-202. PubMed ID: 21973374 [TBL] [Abstract][Full Text] [Related]
54. Caputo standard α-family of maps: fractional difference vs. fractional. Edelman M Chaos; 2014 Jun; 24(2):023137. PubMed ID: 24985451 [TBL] [Abstract][Full Text] [Related]
56. Effect of fracture compliance on wave propagation within a fluid-filled fracture. Nakagawa S; Korneev VA J Acoust Soc Am; 2014 Jun; 135(6):3186-97. PubMed ID: 24907784 [TBL] [Abstract][Full Text] [Related]
57. Time Fractional Fisher-KPP and Fitzhugh-Nagumo Equations. Angstmann CN; Henry BI Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286804 [TBL] [Abstract][Full Text] [Related]
58. An effective phase shift diffusion equation method for analysis of PFG normal and fractional diffusions. Lin G J Magn Reson; 2015 Oct; 259():232-40. PubMed ID: 26384777 [TBL] [Abstract][Full Text] [Related]
59. On a time-domain representation of the Kramers-Kronig dispersion relations. Waters KR; Hughes MS; Brandenburger GH; Miller JG J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2114-9. PubMed ID: 11108348 [TBL] [Abstract][Full Text] [Related]
60. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications. Ding XL; Nieto JJ Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265151 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]