These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25045688)

  • 1. Osteoblast-like cell behavior on porous scaffolds based on poly(styrene) fibers.
    Serafim A; Mallet R; Pascaretti-Grizon F; Stancu IC; Chappard D
    Biomed Res Int; 2014; 2014():609319. PubMed ID: 25045688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polystyrene scaffolds based on microfibers as a bone substitute; development and in vitro study.
    Terranova L; Mallet R; Perrot R; Chappard D
    Acta Biomater; 2016 Jan; 29():380-388. PubMed ID: 26518105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior of macrophage and osteoblast cell lines in contact with the β-TCP biomaterial (beta-tricalcium phosphate).
    Arbez B; Libouban H
    Morphologie; 2017 Sep; 101(334):154-163. PubMed ID: 28506709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds.
    San Miguel B; Kriauciunas R; Tosatti S; Ehrbar M; Ghayor C; Textor M; Weber FE
    J Biomed Mater Res A; 2010 Sep; 94(4):1023-33. PubMed ID: 20694969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoblast growth and function in porous poly epsilon -caprolactone matrices for bone repair: a preliminary study.
    Ciapetti G; Ambrosio L; Savarino L; Granchi D; Cenni E; Baldini N; Pagani S; Guizzardi S; Causa F; Giunti A
    Biomaterials; 2003 Sep; 24(21):3815-24. PubMed ID: 12818554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new route to produce starch-based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation.
    Tuzlakoglu K; Pashkuleva I; Rodrigues MT; Gomes ME; van Lenthe GH; Müller R; Reis RL
    J Biomed Mater Res A; 2010 Jan; 92(1):369-77. PubMed ID: 19191314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of osteoblast-like cells on biomimetic apatite-coated chitosan scaffolds.
    Manjubala I; Ponomarev I; Wilke I; Jandt KD
    J Biomed Mater Res B Appl Biomater; 2008 Jan; 84(1):7-16. PubMed ID: 17455270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.
    Nga NK; Hoai TT; Viet PH
    Colloids Surf B Biointerfaces; 2015 Apr; 128():506-514. PubMed ID: 25791418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect.
    Panseri S; Cunha C; D'Alessandro T; Sandri M; Russo A; Giavaresi G; Marcacci M; Hung CT; Tampieri A
    PLoS One; 2012; 7(6):e38710. PubMed ID: 22685602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of integrin α2 β1 in mediating osteoblastic differentiation on three-dimensional titanium scaffolds with submicron-scale texture.
    Wang X; Schwartz Z; Gittens RA; Cheng A; Olivares-Navarrete R; Chen H; Boyan BD
    J Biomed Mater Res A; 2015 Jun; 103(6):1907-18. PubMed ID: 25203434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison study on the behavior of human endometrial stem cell-derived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods.
    Namini MS; Bayat N; Tajerian R; Ebrahimi-Barough S; Azami M; Irani S; Jangjoo S; Shirian S; Ai J
    J Orthop Surg Res; 2018 Mar; 13(1):63. PubMed ID: 29587806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospinning of highly porous scaffolds for cartilage regeneration.
    Thorvaldsson A; Stenhamre H; Gatenholm P; Walkenström P
    Biomacromolecules; 2008 Mar; 9(3):1044-9. PubMed ID: 18260633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D interconnected porous biomimetic scaffolds: In vitro cell response.
    Panzavolta S; Torricelli P; Amadori S; Parrilli A; Rubini K; della Bella E; Fini M; Bigi A
    J Biomed Mater Res A; 2013 Dec; 101(12):3560-70. PubMed ID: 23629945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning of Titanium Microfiber Scaffold with UV-Photofunctionalization for Enhanced Osteoblast Affinity and Function.
    Iwasaki C; Hirota M; Tanaka M; Kitajima H; Tabuchi M; Ishijima M; Park W; Sugita Y; Miyazawa K; Goto S; Ikeda T; Ogawa T
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31979313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of starch-based biomaterials on the in vitro proliferation and viability of osteoblast-like cells.
    Marques AP; Cruz HR; Coutinho OP; Reis RL
    J Mater Sci Mater Med; 2005 Sep; 16(9):833-42. PubMed ID: 16167112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative in vitro study of the proliferation and growth of ovine osteoblast-like cells on various alloplastic biomaterials manufactured for augmentation and reconstruction of tissue or bone defects.
    Schmitt SC; Wiedmann-Al-Ahmad M; Kuschnierz J; Al-Ahmad A; Huebner U; Schmelzeisen R; Gutwald R
    J Mater Sci Mater Med; 2008 Mar; 19(3):1441-50. PubMed ID: 17914632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyhydroxyalkanoate (PHBV) fibers obtained by a wet spinning method: Good in vitro cytocompatibility but absence of in vivo biocompatibility when used as a bone graft.
    Degeratu CN; Mabilleau G; Aguado E; Mallet R; Chappard D; Cincu C; Stancu IC
    Morphologie; 2019 Jun; 103(341 Pt 2):94-102. PubMed ID: 30905592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.