These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25045690)

  • 1. VO2 kinetics and metabolic contributions whilst swimming at 95, 100, and 105% of the velocity at VO2max.
    Sousa AC; Vilas-Boas JP; Fernandes RJ
    Biomed Res Int; 2014; 2014():675363. PubMed ID: 25045690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise modality effect on oxygen uptake off-transient kinetics at maximal oxygen uptake intensity.
    Sousa A; Rodríguez FA; Machado L; Vilas-Boas JP; Fernandes RJ
    Exp Physiol; 2015 Jun; 100(6):719-29. PubMed ID: 25865136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of aerobic fitness on oxygen uptake kinetics in heavy intensity swimming.
    Reis JF; Alves FB; Bruno PM; Vleck V; Millet GP
    Eur J Appl Physiol; 2012 May; 112(5):1689-97. PubMed ID: 21879352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a prior intermittent run at vVO2max on oxygen kinetics during an all-out severe run in humans.
    Billat VL; Bocquet V; Slawinski J; Laffite L; Demarle A; Chassaing P; Koralsztein JP
    J Sports Med Phys Fitness; 2000 Sep; 40(3):185-94. PubMed ID: 11125760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High level runners are able to maintain a VO2 steady-state below VO2max in an all-out run over their critical velocity.
    Billat V; Binsse V; Petit B; Koralsztein JP
    Arch Physiol Biochem; 1998 Feb; 106(1):38-45. PubMed ID: 9783059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen uptake kinetics and energy system's contribution around maximal lactate steady state swimming intensity.
    Pelarigo JG; Machado L; Fernandes RJ; Greco CC; Vilas-Boas JP
    PLoS One; 2017; 12(2):e0167263. PubMed ID: 28245246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time limit at VO2max velocity in elite crawl swimmers.
    Fernandes RJ; Keskinen KL; Colaço P; Querido AJ; Machado LJ; Morais PA; Novais DQ; Marinho DA; Vilas Boas JP
    Int J Sports Med; 2008 Feb; 29(2):145-50. PubMed ID: 17990207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exercise Modality Effect on Bioenergetical Performance at V˙O2max Intensity.
    Sousa A; Figueiredo P; Zamparo P; Pyne DB; Vilas-Boas JP; Fernandes RJ
    Med Sci Sports Exerc; 2015 Aug; 47(8):1705-13. PubMed ID: 25412298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VO
    Sousa A; Vilas-Boas JP; Fernandes RJ; Figueiredo P
    Int J Sports Physiol Perform; 2017 Aug; 12(7):872-877. PubMed ID: 27918660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of intensity on V̇O2 kinetics during incremental free swimming.
    de Jesus K; Sousa A; de Jesus K; Ribeiro J; Machado L; Rodríguez F; Keskinen K; Vilas-Boas JP; Fernandes RJ
    Appl Physiol Nutr Metab; 2015 Sep; 40(9):918-23. PubMed ID: 26300011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake.
    Billat VL; Morton RH; Blondel N; Berthoin S; Bocquet V; Koralsztein JP; Barstow TJ
    Eur J Appl Physiol; 2000 Jun; 82(3):178-87. PubMed ID: 10929211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs.
    Billat VL; Slawinski J; Bocquet V; Demarle A; Lafitte L; Chassaing P; Koralsztein JP
    Eur J Appl Physiol; 2000 Feb; 81(3):188-96. PubMed ID: 10638376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applied physiology of triathlon.
    O'Toole ML; Douglas PS
    Sports Med; 1995 Apr; 19(4):251-67. PubMed ID: 7604198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the velocity associated with VO2max.
    Bernard O; Ouattara S; Maddio F; Jimenez C; Charpenet A; Melin B; Bittel J
    Med Sci Sports Exerc; 2000 Feb; 32(2):464-70. PubMed ID: 10694133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time to Exhaustion at the VO2max Velocity in Swimming: A Review.
    Fernandes RJ; Vilas-Boas JP
    J Hum Kinet; 2012 May; 32():121-34. PubMed ID: 23486651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ventilatory and Physiological Responses in Swimmers Below and Above Their Maximal Lactate Steady State.
    Espada MC; Reis JF; Almeida TF; Bruno PM; Vleck VE; Alves FB
    J Strength Cond Res; 2015 Oct; 29(10):2836-43. PubMed ID: 25148466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-intensity Interval Training in Different Exercise Modes: Lessons from Time to Exhaustion.
    Sousa AC; Fernandes RJ; Boas JPV; Figueiredo P
    Int J Sports Med; 2018 Sep; 39(9):668-673. PubMed ID: 29925107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does net energy cost of swimming affect time to exhaustion at the individual's maximal oxygen consumption velocity?
    Fernandes RJ; Billat VL; Cruz AC; Colaço PJ; Cardoso CS; Vilas-Boas JP
    J Sports Med Phys Fitness; 2006 Sep; 46(3):373-80. PubMed ID: 16998440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VO₂ kinetics and metabolic contributions during full and upper body extreme swimming intensity.
    Ribeiro J; Figueiredo P; Sousa A; Monteiro J; Pelarigo J; Vilas-Boas JP; Toussaint HM; Fernandes RF
    Eur J Appl Physiol; 2015 May; 115(5):1117-24. PubMed ID: 25547736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the oxygen uptake slow component on the aerobic energy cost of high-intensity submaximal treadmill running in humans.
    Bernard O; Maddio F; Ouattara S; Jimenez C; Charpenet A; Melin B; Bittel J
    Eur J Appl Physiol Occup Physiol; 1998 Nov; 78(6):578-85. PubMed ID: 9840416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.