These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 25046158)
1. Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization. Sánchez BJ; Pérez-Correa JR; Agosin E Metab Eng; 2014 Sep; 25():159-73. PubMed ID: 25046158 [TBL] [Abstract][Full Text] [Related]
2. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Hjersted JL; Henson MA; Mahadevan R Biotechnol Bioeng; 2007 Aug; 97(5):1190-204. PubMed ID: 17243146 [TBL] [Abstract][Full Text] [Related]
3. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae. Hjersted JL; Henson MA IET Syst Biol; 2009 May; 3(3):167-79. PubMed ID: 19449977 [TBL] [Abstract][Full Text] [Related]
4. Metabolic flux analysis of the sterol pathway in the yeast Saccharomyces cerevisiae. Maczek J; Junne S; Nowak P; Goetz P Bioprocess Biosyst Eng; 2006 Oct; 29(4):241-52. PubMed ID: 16838149 [TBL] [Abstract][Full Text] [Related]
10. Population FBA predicts metabolic phenotypes in yeast. Labhsetwar P; Melo MCR; Cole JA; Luthey-Schulten Z PLoS Comput Biol; 2017 Sep; 13(9):e1005728. PubMed ID: 28886026 [TBL] [Abstract][Full Text] [Related]
11. Combining flux and energy balance analysis to model large-scale biochemical networks. Heuett WJ; Qian H J Bioinform Comput Biol; 2006 Dec; 4(6):1227-43. PubMed ID: 17245812 [TBL] [Abstract][Full Text] [Related]
12. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Vos T; Hakkaart XD; de Hulster EA; van Maris AJ; Pronk JT; Daran-Lapujade P Microb Cell Fact; 2016 Jun; 15(1):111. PubMed ID: 27317316 [TBL] [Abstract][Full Text] [Related]
13. Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning. Latimer LN; Dueber JE Biotechnol Bioeng; 2017 Jun; 114(6):1301-1309. PubMed ID: 28165133 [TBL] [Abstract][Full Text] [Related]
14. Prediction of metabolic function from limited data: Lumped hybrid cybernetic modeling (L-HCM). Song HS; Ramkrishna D Biotechnol Bioeng; 2010 Jun; 106(2):271-84. PubMed ID: 20148411 [TBL] [Abstract][Full Text] [Related]
15. Dynamic flux balance analysis of the metabolism of Saccharomyces cerevisiae during the shift from fully respirative or respirofermentative metabolic states to anaerobiosis. Jouhten P; Wiebe M; Penttilä M FEBS J; 2012 Sep; 279(18):3338-54. PubMed ID: 22672422 [TBL] [Abstract][Full Text] [Related]
16. Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Sánchez BJ; Nielsen J Integr Biol (Camb); 2015 Aug; 7(8):846-58. PubMed ID: 26079294 [TBL] [Abstract][Full Text] [Related]
17. Enzyme-constrained models predict the dynamics of Saccharomyces cerevisiae growth in continuous, batch and fed-batch bioreactors. Moreno-Paz S; Schmitz J; Martins Dos Santos VAP; Suarez-Diez M Microb Biotechnol; 2022 May; 15(5):1434-1445. PubMed ID: 35048533 [TBL] [Abstract][Full Text] [Related]
18. Towards a genome-scale kinetic model of cellular metabolism. Smallbone K; Simeonidis E; Swainston N; Mendes P BMC Syst Biol; 2010 Jan; 4():6. PubMed ID: 20109182 [TBL] [Abstract][Full Text] [Related]
19. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics. Nikerel IE; van Winden WA; van Gulik WM; Heijnen JJ BMC Bioinformatics; 2006 Dec; 7():540. PubMed ID: 17184531 [TBL] [Abstract][Full Text] [Related]
20. Systematic planning of genome-scale experiments in poorly studied species. Guan Y; Dunham M; Caudy A; Troyanskaya O PLoS Comput Biol; 2010 Mar; 6(3):e1000698. PubMed ID: 20221257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]