These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25046158)

  • 21. A method for analysis and design of metabolism using metabolomics data and kinetic models: Application on lipidomics using a novel kinetic model of sphingolipid metabolism.
    Savoglidis G; da Silveira Dos Santos AX; Riezman I; Angelino P; Riezman H; Hatzimanikatis V
    Metab Eng; 2016 Sep; 37():46-62. PubMed ID: 27113440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of metabolic units induced by environmental signals.
    Nacher JC; Schwartz JM; Kanehisa M; Akutsu T
    Bioinformatics; 2006 Jul; 22(14):e375-83. PubMed ID: 16873496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parameter estimation in models combining signal transduction and metabolic pathways: the dependent input approach.
    van Riel NA; Sontag ED
    Syst Biol (Stevenage); 2006 Jul; 153(4):263-74. PubMed ID: 16986628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating proteome allocation of Saccharomyces cerevisiae phenotypes with resource balance analysis.
    Dinh HV; Maranas CD
    Metab Eng; 2023 May; 77():242-255. PubMed ID: 37080482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expanding a dynamic flux balance model of yeast fermentation to genome-scale.
    Vargas FA; Pizarro F; Pérez-Correa JR; Agosin E
    BMC Syst Biol; 2011 May; 5():75. PubMed ID: 21595919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae.
    Pornkamol U; Franzen CJ
    Biotechnol J; 2015 Aug; 10(8):1248-58. PubMed ID: 25880365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae.
    Suástegui M; Guo W; Feng X; Shao Z
    Biotechnol Bioeng; 2016 Dec; 113(12):2676-2685. PubMed ID: 27317047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures.
    Alff-Tuomala S; Salusjärvi L; Barth D; Oja M; Penttilä M; Pitkänen JP; Ruohonen L; Jouhten P
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):969-85. PubMed ID: 26454869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo kinetics of primary metabolism in Saccharomyces cerevisiae studied through prolonged chemostat cultivation.
    Wu L; Mashego MR; Proell AM; Vinke JL; Ras C; van Dam J; van Winden WA; van Gulik WM; Heijnen JJ
    Metab Eng; 2006 Mar; 8(2):160-71. PubMed ID: 16233984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect.
    Kajihata S; Matsuda F; Yoshimi M; Hayakawa K; Furusawa C; Kanda A; Shimizu H
    J Biosci Bioeng; 2015 Aug; 120(2):140-4. PubMed ID: 25634548
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Hayakawa K; Matsuda F; Shimizu H
    Microb Cell Fact; 2018 May; 17(1):82. PubMed ID: 29855316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path.
    Campodonico MA; Andrews BA; Asenjo JA; Palsson BO; Feist AM
    Metab Eng; 2014 Sep; 25():140-58. PubMed ID: 25080239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle.
    Song HS; Reifman J; Wallqvist A
    PLoS One; 2014; 9(11):e112524. PubMed ID: 25397773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Filling gaps in a metabolic network using expression information.
    Kharchenko P; Vitkup D; Church GM
    Bioinformatics; 2004 Aug; 20 Suppl 1():i178-85. PubMed ID: 15262797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic metabolic modelling of overproduced protein secretion in Streptomyces lividans using adaptive DFBA.
    Valverde JR; Gullón S; García-Herrero CA; Campoy I; Mellado RP
    BMC Microbiol; 2019 Oct; 19(1):233. PubMed ID: 31655540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J
    J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated analysis of multiple data sources reveals modular structure of biological networks.
    Lu H; Shi B; Wu G; Zhang Y; Zhu X; Zhang Z; Liu C; Zhao Y; Wu T; Wang J; Chen R
    Biochem Biophys Res Commun; 2006 Jun; 345(1):302-9. PubMed ID: 16690033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production.
    Bro C; Regenberg B; Förster J; Nielsen J
    Metab Eng; 2006 Mar; 8(2):102-11. PubMed ID: 16289778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains.
    Grotkjaer T; Christakopoulos P; Nielsen J; Olsson L
    Metab Eng; 2005; 7(5-6):437-44. PubMed ID: 16140032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Planning optimal measurements of isotopomer distributions for estimation of metabolic fluxes.
    Rantanen A; Mielikäinen T; Rousu J; Maaheimo H; Ukkonen E
    Bioinformatics; 2006 May; 22(10):1198-206. PubMed ID: 16504982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.