These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 25046158)
41. 13C metabolic flux analysis at a genome-scale. Gopalakrishnan S; Maranas CD Metab Eng; 2015 Nov; 32():12-22. PubMed ID: 26358840 [TBL] [Abstract][Full Text] [Related]
42. Role-similarity based functional prediction in networked systems: application to the yeast proteome. Holme P; Huss M J R Soc Interface; 2005 Sep; 2(4):327-33. PubMed ID: 16849190 [TBL] [Abstract][Full Text] [Related]
43. A dynamic, genome-scale flux model of Lactococcus lactis to increase specific recombinant protein expression. Oddone GM; Mills DA; Block DE Metab Eng; 2009 Nov; 11(6):367-81. PubMed ID: 19666133 [TBL] [Abstract][Full Text] [Related]
44. Identification of flux regulation coefficients from elementary flux modes: A systems biology tool for analysis of metabolic networks. Nookaew I; Meechai A; Thammarongtham C; Laoteng K; Ruanglek V; Cheevadhanarak S; Nielsen J; Bhumiratana S Biotechnol Bioeng; 2007 Aug; 97(6):1535-49. PubMed ID: 17238207 [TBL] [Abstract][Full Text] [Related]
45. Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models. Hjersted JL; Henson MA Biotechnol Prog; 2006; 22(5):1239-48. PubMed ID: 17022660 [TBL] [Abstract][Full Text] [Related]
46. Growth and energy metabolism in aerobic fed-batch cultures of Saccharomyces cerevisiae: simulation and model verification. Pham HT; Larsson G; Enfors SO Biotechnol Bioeng; 1998 Nov; 60(4):474-82. PubMed ID: 10099453 [TBL] [Abstract][Full Text] [Related]
47. Dynamic simulation of protein complex formation on a genomic scale. Beyer A; Wilhelm T Bioinformatics; 2005 Apr; 21(8):1610-6. PubMed ID: 15598828 [TBL] [Abstract][Full Text] [Related]
48. A new strategy for dynamic metabolic flux estimation by integrating transient metabolome data into genome-scale metabolic models. Liu P; Hua Y; Zhang W; Xie T; Zhuang Y; Xia J; Noorman H Bioprocess Biosyst Eng; 2021 Dec; 44(12):2553-2565. PubMed ID: 34459987 [TBL] [Abstract][Full Text] [Related]
49. LK-DFBA: a linear programming-based modeling strategy for capturing dynamics and metabolite-dependent regulation in metabolism. Dromms RA; Lee JY; Styczynski MP BMC Bioinformatics; 2020 Mar; 21(1):93. PubMed ID: 32122331 [TBL] [Abstract][Full Text] [Related]
50. Mathematical modeling of living cell metabolism using the method of steady-state stoichiometric flux balance. Drozdov-Tikhomirov LN; Scurida GI; Davidov AV; Alexandrov AA; Zvyagilskaya RA J Bioinform Comput Biol; 2006 Aug; 4(4):865-85. PubMed ID: 17007072 [TBL] [Abstract][Full Text] [Related]
51. Discover true association rates in multi-protein complex proteomics data sets. Shen C; Li L; Chen JY Proc IEEE Comput Syst Bioinform Conf; 2005; ():167-74. PubMed ID: 16447974 [TBL] [Abstract][Full Text] [Related]
52. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Asadollahi MA; Maury J; Patil KR; Schalk M; Clark A; Nielsen J Metab Eng; 2009 Nov; 11(6):328-34. PubMed ID: 19619667 [TBL] [Abstract][Full Text] [Related]
53. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters. Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363 [TBL] [Abstract][Full Text] [Related]
54. Application of dynamic metabolic flux analysis for process modeling: Robust flux estimation with regularization, confidence bounds, and selection of elementary modes. Hebing L; Neymann T; Engell S Biotechnol Bioeng; 2020 Jul; 117(7):2058-2073. PubMed ID: 32196640 [TBL] [Abstract][Full Text] [Related]
55. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale. Famili I; Mahadevan R; Palsson BO Biophys J; 2005 Mar; 88(3):1616-25. PubMed ID: 15626710 [TBL] [Abstract][Full Text] [Related]
57. Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae. Swinnen S; Ho PW; Klein M; Nevoigt E Metab Eng; 2016 Jul; 36():68-79. PubMed ID: 26971668 [TBL] [Abstract][Full Text] [Related]
58. Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis. Pritchard L; Kell DB Eur J Biochem; 2002 Aug; 269(16):3894-904. PubMed ID: 12180966 [TBL] [Abstract][Full Text] [Related]
59. Predicting genetic engineering targets with Elementary Flux Mode Analysis: a review of four current methods. Ruckerbauer DE; Jungreuthmayer C; Zanghellini J N Biotechnol; 2015 Dec; 32(6):534-46. PubMed ID: 25917465 [TBL] [Abstract][Full Text] [Related]
60. System-level insights into yeast metabolism by thermodynamic analysis of elementary flux modes. Jol SJ; Kümmel A; Terzer M; Stelling J; Heinemann M PLoS Comput Biol; 2012; 8(3):e1002415. PubMed ID: 22416224 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]