These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 25046158)
61. The importance of compartmentalization in metabolic flux models: yeast as an ecosystem of organelles. Klitgord N; Segrè D Genome Inform; 2010 Jan; 22():41-55. PubMed ID: 20238418 [TBL] [Abstract][Full Text] [Related]
62. Efficient algorithms for detecting signaling pathways in protein interaction networks. Scott J; Ideker T; Karp RM; Sharan R J Comput Biol; 2006 Mar; 13(2):133-44. PubMed ID: 16597231 [TBL] [Abstract][Full Text] [Related]
63. Single cell and in vivo analyses elucidate the effect of xylC lactonase during production of D-xylonate in Saccharomyces cerevisiae. Nygård Y; Maaheimo H; Mojzita D; Toivari M; Wiebe M; Resnekov O; Gustavo Pesce C; Ruohonen L; Penttilä M Metab Eng; 2014 Sep; 25():238-47. PubMed ID: 25073011 [TBL] [Abstract][Full Text] [Related]
64. Integrative investigation of metabolic and transcriptomic data. Pir P; Kirdar B; Hayes A; Onsan ZY; Ulgen KO; Oliver SG BMC Bioinformatics; 2006 Apr; 7():203. PubMed ID: 16611354 [TBL] [Abstract][Full Text] [Related]
65. Dynamic metabolic resource allocation based on the maximum entropy principle. Tourigny DS J Math Biol; 2020 Jun; 80(7):2395-2430. PubMed ID: 32424475 [TBL] [Abstract][Full Text] [Related]
66. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables. Kim JI; Varner JD; Ramkrishna D Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908 [TBL] [Abstract][Full Text] [Related]
67. Pairwise alignment of protein interaction networks. Koyutürk M; Kim Y; Topkara U; Subramaniam S; Szpankowski W; Grama A J Comput Biol; 2006 Mar; 13(2):182-99. PubMed ID: 16597234 [TBL] [Abstract][Full Text] [Related]
68. Dynamic metabolic flux analysis--tools for probing transient states of metabolic networks. Antoniewicz MR Curr Opin Biotechnol; 2013 Dec; 24(6):973-8. PubMed ID: 23611566 [TBL] [Abstract][Full Text] [Related]
69. Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells. Bruckmann A; Hensbergen PJ; Balog CI; Deelder AM; Brandt R; Snoek IS; Steensma HY; van Heusden GP J Proteomics; 2009 Jan; 71(6):662-9. PubMed ID: 19070690 [TBL] [Abstract][Full Text] [Related]
70. Metabolic control analysis under uncertainty: framework development and case studies. Wang L; Birol I; Hatzimanikatis V Biophys J; 2004 Dec; 87(6):3750-63. PubMed ID: 15465856 [TBL] [Abstract][Full Text] [Related]
71. Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions. Kim SK; Jo JH; Park YC; Jin YS; Seo JH Enzyme Microb Technol; 2017 Jun; 101():30-35. PubMed ID: 28433188 [TBL] [Abstract][Full Text] [Related]
72. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. de Groot MJL; Daran-Lapujade P; van Breukelen B; Knijnenburg TA; de Hulster EAF; Reinders MJT; Pronk JT; Heck AJR; Slijper M Microbiology (Reading); 2007 Nov; 153(Pt 11):3864-3878. PubMed ID: 17975095 [TBL] [Abstract][Full Text] [Related]
73. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations. Seong YJ; Park H; Yang J; Kim SJ; Choi W; Kim KH; Park YC Appl Microbiol Biotechnol; 2017 May; 101(9):3567-3575. PubMed ID: 28168313 [TBL] [Abstract][Full Text] [Related]
74. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks. Andreozzi S; Miskovic L; Hatzimanikatis V Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788 [TBL] [Abstract][Full Text] [Related]
76. Evolutionary programming as a platform for in silico metabolic engineering. Patil KR; Rocha I; Förster J; Nielsen J BMC Bioinformatics; 2005 Dec; 6():308. PubMed ID: 16375763 [TBL] [Abstract][Full Text] [Related]
77. How to identify essential genes from molecular networks? del Rio G; Koschützki D; Coello G BMC Syst Biol; 2009 Oct; 3():102. PubMed ID: 19822021 [TBL] [Abstract][Full Text] [Related]