These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 25046577)
1. Low CO2 results in a rearrangement of carbon metabolism to support C4 photosynthetic carbon assimilation in Thalassiosira pseudonana. Kustka AB; Milligan AJ; Zheng H; New AM; Gates C; Bidle KD; Reinfelder JR New Phytol; 2014 Nov; 204(3):507-520. PubMed ID: 25046577 [TBL] [Abstract][Full Text] [Related]
2. Localization of enzymes relating to C4 organic acid metabolisms in the marine diatom, Thalassiosira pseudonana. Tanaka R; Kikutani S; Mahardika A; Matsuda Y Photosynth Res; 2014 Sep; 121(2-3):251-63. PubMed ID: 24414292 [TBL] [Abstract][Full Text] [Related]
3. The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana. Clement R; Dimnet L; Maberly SC; Gontero B New Phytol; 2016 Mar; 209(4):1417-27. PubMed ID: 26529678 [TBL] [Abstract][Full Text] [Related]
4. Expression and inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C4 pathway of marine diatoms. McGinn PJ; Morel FM Plant Physiol; 2008 Jan; 146(1):300-9. PubMed ID: 17993542 [TBL] [Abstract][Full Text] [Related]
5. C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Roberts K; Granum E; Leegood RC; Raven JA Plant Physiol; 2007 Sep; 145(1):230-5. PubMed ID: 17644625 [TBL] [Abstract][Full Text] [Related]
6. PRIMARY CARBON AND NITROGEN METABOLIC GENE EXPRESSION IN THE DIATOM THALASSIOSIRA PSEUDONANA (BACILLARIOPHYCEAE): DIEL PERIODICITY AND EFFECTS OF INORGANIC CARBON AND NITROGEN(1). Granum E; Roberts K; Raven JA; Leegood RC J Phycol; 2009 Oct; 45(5):1083-92. PubMed ID: 27032353 [TBL] [Abstract][Full Text] [Related]
7. A Partial C Lin H; Arrivault S; Coe RA; Karki S; Covshoff S; Bagunu E; Lunn JE; Stitt M; Furbank RT; Hibberd JM; Quick WP Front Plant Sci; 2020; 11():564463. PubMed ID: 33178234 [TBL] [Abstract][Full Text] [Related]
8. Diversity of CO2-concentrating mechanisms and responses to CO2 concentration in marine and freshwater diatoms. Clement R; Jensen E; Prioretti L; Maberly SC; Gontero B J Exp Bot; 2017 Jun; 68(14):3925-3935. PubMed ID: 28369472 [TBL] [Abstract][Full Text] [Related]
9. The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum. Ewe D; Tachibana M; Kikutani S; Gruber A; Río Bártulos C; Konert G; Kaplan A; Matsuda Y; Kroth PG Photosynth Res; 2018 Aug; 137(2):263-280. PubMed ID: 29572588 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial phosphoenolpyruvate carboxylase contributes to carbon fixation in the diatom Phaeodactylum tricornutum at low inorganic carbon concentrations. Yu G; Nakajima K; Gruber A; Rio Bartulos C; Schober AF; Lepetit B; Yohannes E; Matsuda Y; Kroth PG New Phytol; 2022 Aug; 235(4):1379-1393. PubMed ID: 35596716 [TBL] [Abstract][Full Text] [Related]
11. Photosynthetic carbon assimilation in the coccolithophorid Emiliania huxleyi (Haptophyta): Evidence for the predominant operation of the c3 cycle and the contribution of {beta}-carboxylases to the active anaplerotic reaction. Tsuji Y; Suzuki I; Shiraiwa Y Plant Cell Physiol; 2009 Feb; 50(2):318-29. PubMed ID: 19109302 [TBL] [Abstract][Full Text] [Related]
12. Unicellular C4 photosynthesis in a marine diatom. Reinfelder JR; Kraepiel AM; Morel FM Nature; 2000 Oct; 407(6807):996-9. PubMed ID: 11069177 [TBL] [Abstract][Full Text] [Related]
13. Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Voznesenskaya EV; Franceschi VR; Kiirats O; Artyusheva EG; Freitag H; Edwards GE Plant J; 2002 Sep; 31(5):649-62. PubMed ID: 12207654 [TBL] [Abstract][Full Text] [Related]
14. Control of C4 photosynthesis: effects of reduced activities of phosphoenolpyruvate carboxylase on CO2 assimilation in Amaranthus edulis L. Bailey KJ; Battistelli A; Dever LV; Lea PJ; Leegood RC J Exp Bot; 2000 Feb; 51 Spec No():339-46. PubMed ID: 10938841 [TBL] [Abstract][Full Text] [Related]
15. The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Reinfelder JR; Milligan AJ; Morel FM Plant Physiol; 2004 Aug; 135(4):2106-11. PubMed ID: 15286292 [TBL] [Abstract][Full Text] [Related]
16. The activities of PEP carboxylase and the C4 acid decarboxylases are little changed by drought stress in three C4 grasses of different subtypes. Carmo-Silva AE; Bernardes da Silva A; Keys AJ; Parry MA; Arrabaça MC Photosynth Res; 2008 Sep; 97(3):223-33. PubMed ID: 18629606 [TBL] [Abstract][Full Text] [Related]
17. Involvement of abscisic acid, ABI5, and PPC2 in plant acclimation to low CO2. You L; Zhang J; Li L; Xiao C; Feng X; Chen S; Guo L; Hu H J Exp Bot; 2020 Jul; 71(14):4093-4108. PubMed ID: 32206789 [TBL] [Abstract][Full Text] [Related]
18. Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana. Kandoi D; Mohanty S; Govindjee ; Tripathy BC Photosynth Res; 2016 Dec; 130(1-3):47-72. PubMed ID: 26897549 [TBL] [Abstract][Full Text] [Related]
19. The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Reiskind JB; Bowes G Proc Natl Acad Sci U S A; 1991 Apr; 88(7):2883-7. PubMed ID: 11607173 [TBL] [Abstract][Full Text] [Related]
20. Elevated CO Zang S; Xu Z; Yan F; Wu H J Photochem Photobiol B; 2022 Nov; 236():112572. PubMed ID: 36166913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]