BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 25046639)

  • 1. Identification of protein interaction partners in mammalian cells using SILAC-immunoprecipitation quantitative proteomics.
    Emmott E; Goodfellow I
    J Vis Exp; 2014 Jul; (89):. PubMed ID: 25046639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometry-based immuno-precipitation proteomics - the user's guide.
    ten Have S; Boulon S; Ahmad Y; Lamond AI
    Proteomics; 2011 Mar; 11(6):1153-9. PubMed ID: 21365760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affinity Purification-Mass Spectroscopy (AP-MS) and Co-Immunoprecipitation (Co-IP) Technique to Study Protein-Protein Interactions.
    Gnanasekaran P; Pappu HR
    Methods Mol Biol; 2023; 2690():81-85. PubMed ID: 37450138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting Cardiovascular Protein-Protein Interactions by Proximity Proteomics.
    Kushner JS; Liu G; Eisert RJ; Bradshaw GA; Pitt GS; Hinson JT; Kalocsay M; Marx SO
    Circ Res; 2022 Jan; 130(2):273-287. PubMed ID: 35050691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol to test for the formation of ternary protein complexes in vivo or in vitro using a two-step immunoprecipitation approach.
    Zhang BW; Wei ZJ; Lou QQ; Liu Y; Huang J; Yao KH; Xi Y; Chen S; Yang L; Li S
    STAR Protoc; 2024 Jun; 5(2):103080. PubMed ID: 38776227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Protein Interactions in Patient-Derived Xenografts Using Immunoprecipitation.
    Metwally H; Elbrashy MM
    Methods Mol Biol; 2024; 2806():219-227. PubMed ID: 38676806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-immunoprecipitation and semi-quantitative immunoblotting for the analysis of protein-protein interactions.
    Burckhardt CJ; Minna JD; Danuser G
    STAR Protoc; 2021 Sep; 2(3):100644. PubMed ID: 34278331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Norovirus-Mediated Modification of the Translational Landscape via Virus and Host-Induced Cleavage of Translation Initiation Factors.
    Emmott E; Sorgeloos F; Caddy SL; Vashist S; Sosnovtsev S; Lloyd R; Heesom K; Locker N; Goodfellow I
    Mol Cell Proteomics; 2017 Apr; 16(4 suppl 1):S215-S229. PubMed ID: 28087593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lagovirus Non-structural Protein p23: A Putative Viroporin That Interacts With Heat Shock Proteins and Uses a Disulfide Bond for Dimerization.
    Smertina E; Carroll AJ; Boileau J; Emmott E; Jenckel M; Vohra H; Rolland V; Hands P; Hayashi J; Neave MJ; Liu JW; Hall RN; Strive T; Frese M
    Front Microbiol; 2022; 13():923256. PubMed ID: 35923397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparative Quantitative Proteomic Analysis of HCMV-Infected Cells Highlights pUL138 as a Multifunctional Protein.
    Li Y; Shang W; Xiao G; Zhang LK; Zheng C
    Molecules; 2020 May; 25(11):. PubMed ID: 32481657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Subcellular Quantitative Proteomic Analysis of Herpes Simplex Virus Type 1-Infected HEK 293T Cells.
    Wan W; Wang L; Chen X; Zhu S; Shang W; Xiao G; Zhang LK
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31757042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-Protein Interactions in
    Schoeters F; Van Dijck P
    Front Microbiol; 2019; 10():1792. PubMed ID: 31440220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation.
    Hosmillo M; Lu J; McAllaster MR; Eaglesham JB; Wang X; Emmott E; Domingues P; Chaudhry Y; Fitzmaurice TJ; Tung MK; Panas MD; McInerney G; Locker N; Wilen CB; Goodfellow IG
    Elife; 2019 Aug; 8():. PubMed ID: 31403400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Proteomic Analysis Reveals Unfolded-Protein Response Involved in Severe Fever with Thrombocytopenia Syndrome Virus Infection.
    Zhang LK; Wang B; Xin Q; Shang W; Shen S; Xiao G; Deng F; Wang H; Hu Z; Wang M
    J Virol; 2019 May; 93(10):. PubMed ID: 30842332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Murine leukemia virus p12 tethers the capsid-containing pre-integration complex to chromatin by binding directly to host nucleosomes in mitosis.
    Wanaguru M; Barry DJ; Benton DJ; O'Reilly NJ; Bishop KN
    PLoS Pathog; 2018 Jun; 14(6):e1007117. PubMed ID: 29906285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IFIT3 and IFIT2/3 promote IFIT1-mediated translation inhibition by enhancing binding to non-self RNA.
    Fleith RC; Mears HV; Leong XY; Sanford TJ; Emmott E; Graham SC; Mansur DS; Sweeney TR
    Nucleic Acids Res; 2018 Jun; 46(10):5269-5285. PubMed ID: 29554348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the ubiquitin-proteasome system of human embryonic stem cells.
    Saez I; Koyuncu S; Gutierrez-Garcia R; Dieterich C; Vilchez D
    Sci Rep; 2018 Mar; 8(1):4092. PubMed ID: 29511261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection.
    Xin QL; Deng CL; Chen X; Wang J; Wang SB; Wang W; Deng F; Zhang B; Xiao G; Zhang LK
    J Virol; 2017 Jun; 91(12):. PubMed ID: 28404849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Novel MAGE-G1-Interacting Partners in Retinoic Acid-Induced P19 Neuronal Differentiation Using SILAC-Based Proteomics.
    Liu Y; Chen Y; Lin S; Yang S; Liu S
    Sci Rep; 2017 Apr; 7():44699. PubMed ID: 28374796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SILAC Based Proteomic Characterization of Exosomes from HIV-1 Infected Cells.
    Cheruiyot C; Pataki Z; Williams R; Ramratnam B; Li M
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28287540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.