BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 25047054)

  • 1. TENS augments blood flow in somatotopically linked spinal cord segments and mitigates compressive ischemia.
    Budgell BS; Sovak G; Soave D
    Spinal Cord; 2014 Oct; 52(10):744-8. PubMed ID: 25047054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time direct measurement of spinal cord blood flow at the site of compression: relationship between blood flow recovery and motor deficiency in spinal cord injury.
    Hamamoto Y; Ogata T; Morino T; Hino M; Yamamoto H
    Spine (Phila Pa 1976); 2007 Aug; 32(18):1955-62. PubMed ID: 17700440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal cord blood flow in response to focal compression.
    Hitchon PW; Dyste GN; Osenbach RK; Todd MM; Yamada T; Jensen AE
    J Spinal Disord; 1990 Sep; 3(3):210-9. PubMed ID: 2134431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time monitoring of mitochondrial NADH and microcirculatory blood flow in the spinal cord.
    Simonovich M; Barbiro-Michaely E; Mayevsky A
    Spine (Phila Pa 1976); 2008 Nov; 33(23):2495-502. PubMed ID: 18978589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental acute balloon compression of the spinal cord. Factors affecting disappearance and return of the spinal evoked response.
    Kobrine AI; Evans DE; Rizzoli HV
    J Neurosurg; 1979 Dec; 51(6):841-5. PubMed ID: 115971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic relaxation and regional blood flow response to spinal cord compression and decompression.
    Carlson GD; Warden KE; Barbeau JM; Bahniuk E; Kutina-Nelson KL; Biro CL; Bohlman HH; LaManna JC
    Spine (Phila Pa 1976); 1997 Jun; 22(12):1285-91. PubMed ID: 9201829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental cervical myelopathy: autoradiographic studies of spinal cord blood flow patterns.
    Gooding MR; Wilson CB; Hoff JT
    Surg Neurol; 1976 Apr; 5(4):233-9. PubMed ID: 1265634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered blood flow distribution in the rat spinal cord under chronic compression.
    Kurokawa R; Murata H; Ogino M; Ueki K; Kim P
    Spine (Phila Pa 1976); 2011 Jun; 36(13):1006-9. PubMed ID: 21192287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible spinal cord trauma in cats. Additive effects of direct pressure and ischemia.
    Brodkey JS; Richards DE; Blasingame JP; Nulsen FE
    J Neurosurg; 1972 Nov; 37(5):591-3. PubMed ID: 5076377
    [No Abstract]   [Full Text] [Related]  

  • 10. Spinal cord blood flow changes following systemic hypothermia and spinal cord compression injury: an experimental study in the rat using Laser-Doppler flowmetry.
    Westergren H; Farooque M; Olsson Y; Holtz A
    Spinal Cord; 2001 Feb; 39(2):74-84. PubMed ID: 11402362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prostaglandin E1 analog increases spinal cord blood flow at the point of compression during and after experimental spinal cord injury.
    Hamamoto Y; Ogata T; Morino T; Hino M; Yamamoto H
    Spinal Cord; 2010 Feb; 48(2):149-53. PubMed ID: 19687798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of spinal cord blood flow and function in experimental compression.
    Kobrine AI; Evans DE; Rizzoli H
    Surg Neurol; 1978 Jul; 10(1):54-9. PubMed ID: 98855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemically induced spinal cord ischaemia in rats: assessment of blood flow by laser Doppler flowmetry.
    Hao JX; Herregodts P; Lind G; Meyerson B; Seiger A; Wiesenfeld-Hallin Z
    Acta Physiol Scand; 1994 Jun; 151(2):209-15. PubMed ID: 7942056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Clinical application of the evoked spinal cord potentials. Part 1. Neurophysiological assessment of the evoked spinal cord potentials in experimental cord trauma - with reference to cord compression and ischemia (author's transl)].
    Sudo N
    Nihon Seikeigeka Gakkai Zasshi; 1980 Dec; 54(12):1631-47. PubMed ID: 7288222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency transcutaneous electrical nerve stimulation alleviates spasticity after spinal contusion by inhibiting activated microglia in rats.
    Hahm SC; Yoon YW; Kim J
    Neurorehabil Neural Repair; 2015 May; 29(4):370-81. PubMed ID: 25122586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurological recovery is impaired by concurrent but not by asymptomatic pre-existing spinal cord compression after traumatic spinal cord injury.
    Kubota K; Saiwai H; Kumamaru H; Kobayakawa K; Maeda T; Matsumoto Y; Harimaya K; Iwamoto Y; Okada S
    Spine (Phila Pa 1976); 2012 Aug; 37(17):1448-55. PubMed ID: 22414995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of supraspinal and spinal structures to the responses of dorsal spinal cord blood flow to innocuous cutaneous brushing in rats.
    Kurosawa M; Toda H; Watanabe O; Budgell B
    Auton Neurosci; 2007 Oct; 136(1-2):96-9. PubMed ID: 17507293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pressure distribution of cerebrospinal fluid responds to residual compression and decompression in an animal model of acute spinal cord injury.
    Jones CF; Newell RS; Lee JH; Cripton PA; Kwon BK
    Spine (Phila Pa 1976); 2012 Nov; 37(23):E1422-31. PubMed ID: 22869059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of the membrane-bound Na,K ATPase in the evolution of experimental injuries of the spinal cord.
    Nardi P; Chiappetta F; Giancola R; Sinibaldi P; Verna R
    J Neurosurg Sci; 1992; 36(4):197-200. PubMed ID: 1339092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Experimental study of acute spinal cord injury: a study of spinal blood flow].
    Kawata K; Morimoto T; Ohashi T; Tsujimoto S; Hoshida T; Tsunoda S; Sakaki T
    No Shinkei Geka; 1993 Mar; 21(3):239-45. PubMed ID: 8487928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.