These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 25047500)

  • 1. Application of iPS cell technology to cancer epigenome study: uncovering the mechanism of cell status conversion for drug resistance in tumor.
    Matsuda Y; Semi K; Yamada Y
    Pathol Int; 2014 Jul; 64(7):299-308. PubMed ID: 25047500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular reprogramming and cancer development.
    Semi K; Matsuda Y; Ohnishi K; Yamada Y
    Int J Cancer; 2013 Mar; 132(6):1240-8. PubMed ID: 23180619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induced pluripotent stem cell technology for dissecting the cancer epigenome.
    Semi K; Yamada Y
    Cancer Sci; 2015 Oct; 106(10):1251-6. PubMed ID: 26224327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic regulation leading to induced pluripotency drives cancer development in vivo.
    Ohnishi K; Semi K; Yamada Y
    Biochem Biophys Res Commun; 2014 Dec; 455(1-2):10-5. PubMed ID: 25019993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [iPS Cell Technology for Dissecting Mechanisms of Cancer Development].
    Nakasuka F; Yamada Y
    Gan To Kagaku Ryoho; 2020 Oct; 47(10):1407-1410. PubMed ID: 33130730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Application of reprogramming technology for cancer research].
    Yagi M; Semi K; Yamada Y
    Nihon Rinsho; 2015 May; 73(5):751-5. PubMed ID: 25985626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reprogramming cancer cells: a novel approach for cancer therapy or a tool for disease-modeling?
    Yilmazer A; de Lázaro I; Taheri H
    Cancer Lett; 2015 Dec; 369(1):1-8. PubMed ID: 26276716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The causal relationship between epigenetic abnormality and cancer development: in vivo reprogramming and its future application.
    Yamada Y; Yamada Y
    Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(6):235-247. PubMed ID: 29887568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling epigenetic regulation in cancer, aging, and rejuvenation with in vivo reprogramming technology.
    Sogabe Y; Seno H; Yamamoto T; Yamada Y
    Cancer Sci; 2018 Sep; 109(9):2641-2650. PubMed ID: 29989289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current status in cancer cell reprogramming and its clinical implications.
    Izgi K; Canatan H; Iskender B
    J Cancer Res Clin Oncol; 2017 Mar; 143(3):371-383. PubMed ID: 27620745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the specific epigenetic alterations associated with chemo-resistance via reprogramming of cancer cells.
    Kim JJ; Rai R
    Med Hypotheses; 2015 Dec; 85(6):710-4. PubMed ID: 26527497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic regulation of somatic cell reprogramming.
    Wang Y; Bi Y; Gao S
    Curr Opin Genet Dev; 2017 Oct; 46():156-163. PubMed ID: 28823984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental epigenetic modifications and reprogramming-recalcitrant genes.
    Sakurada K
    Stem Cell Res; 2010 May; 4(3):157-64. PubMed ID: 20167552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic modifications in the embryonic and induced pluripotent stem cells.
    Godini R; Lafta HY; Fallahi H
    Gene Expr Patterns; 2018 Sep; 29():1-9. PubMed ID: 29625185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TRIM28 epigenetic corepressor is indispensable for stable induced pluripotent stem cell formation.
    Klimczak M; Czerwińska P; Mazurek S; Sozańska B; Biecek P; Mackiewicz A; Wiznerowicz M
    Stem Cell Res; 2017 Aug; 23():163-172. PubMed ID: 28759843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xenopatients 2.0: reprogramming the epigenetic landscapes of patient-derived cancer genomes.
    Menendez JA; Alarcón T; Corominas-Faja B; Cuyàs E; López-Bonet E; Martin AG; Vellon L
    Cell Cycle; 2014; 13(3):358-70. PubMed ID: 24406535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic regulation of NANOG by miR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming.
    Lee MR; Prasain N; Chae HD; Kim YJ; Mantel C; Yoder MC; Broxmeyer HE
    Stem Cells; 2013 Apr; 31(4):666-81. PubMed ID: 23255147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A developmental framework for induced pluripotency.
    Takahashi K; Yamanaka S
    Development; 2015 Oct; 142(19):3274-85. PubMed ID: 26443632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell reprogramming into the pluripotent state using graphene based substrates.
    Yoo J; Kim J; Baek S; Park Y; Im H; Kim J
    Biomaterials; 2014 Sep; 35(29):8321-9. PubMed ID: 24996757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling.
    Grzybek M; Golonko A; Walczak M; Lisowski P
    Neurobiol Dis; 2017 Mar; 99():84-120. PubMed ID: 27890672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.