BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 25047800)

  • 21. Polyunsaturated lipid diet lengthens torpor and reduces body temperature in a hibernator.
    Geiser F; Kenagy GJ
    Am J Physiol; 1987 May; 252(5 Pt 2):R897-901. PubMed ID: 3578556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of polyunsaturated fatty acids in the expression of torpor by mammals: a review.
    Munro D; Thomas DW
    Zoology (Jena); 2004; 107(1):29-48. PubMed ID: 16351926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dietary fats and body lipid composition in relation to hibernation in free-ranging echidnas.
    Falkenstein F; Körtner G; Watson K; Geiser F
    J Comp Physiol B; 2001 Apr; 171(3):189-94. PubMed ID: 11352101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of dietary fatty acids on metabolic rate and nonshivering thermogenesis in golden hamsters.
    Jefimow M; Wojciechowski MS
    J Exp Zool A Ecol Genet Physiol; 2014 Feb; 321(2):98-107. PubMed ID: 24151228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maintenance of a fully functional digestive system during hibernation in the European hamster, a food-storing hibernator.
    Weitten M; Oudart H; Habold C
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Mar; 193():45-51. PubMed ID: 26774183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Torpor-responsive microRNAs in the heart of the Monito del monte, Dromiciops gliroides.
    Breedon SA; Varma A; Quintero-Galvis JF; Gaitán-Espitia JD; Mejías C; Nespolo RF; Storey KB
    Biofactors; 2023; 49(5):1061-1073. PubMed ID: 37219063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aerobic power, huddling and the efficiency of torpor in the South American marsupial, Dromiciops gliroides.
    Franco M; Contreras C; Cortés P; Chappell MA; Soto-Gamboa M; Nespolo RF
    Biol Open; 2012 Dec; 1(12):1178-84. PubMed ID: 23259051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A decade of developments in the area of fat supplementation research with beef cattle and sheep.
    Hess BW; Moss GE; Rule DC
    J Anim Sci; 2008 Apr; 86(14 Suppl):E188-204. PubMed ID: 18156350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of dietary fatty acids in the evolution of spontaneous and facultative hibernation patterns in prairie dogs.
    Harlow HJ; Frank CL
    J Comp Physiol B; 2001 Feb; 171(1):77-84. PubMed ID: 11263729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of body mass and diet composition on torpor patterns in a Malagasy primate (Microcebus murinus).
    Faherty SL; Campbell CR; Hilbig SA; Yoder AD
    J Comp Physiol B; 2017 May; 187(4):677-688. PubMed ID: 27830334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Annual lipid cycles in hibernators: integration of physiology and behavior.
    Dark J
    Annu Rev Nutr; 2005; 25():469-97. PubMed ID: 16011475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of dietary fatty acids on energetics and torpor in the Chilean mouse-opossum Thylamys elegans.
    Bozinovic F; Méndez MA
    Comp Biochem Physiol A Physiol; 1997 Feb; 116(2):101-4. PubMed ID: 9011030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioenergetics and intestinal phenotypic flexibility in the microbiotherid marsupial (Dromiciops gliroides) from the temperate forest in South America.
    Cortés PA; Franco M; Sabat P; Quijano SA; Nespolo RF
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Oct; 160(2):117-24. PubMed ID: 21627996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Group hibernation does not reduce energetic costs of young yellow-bellied marmots.
    Armitage KB; Woods BC
    Physiol Biochem Zool; 2003; 76(6):888-98. PubMed ID: 14988804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of food store quality on hibernation performance in common hamsters.
    Siutz C; Nemeth M; Wagner KH; Quint R; Ruf T; Millesi E
    PLoS One; 2017; 12(10):e0185913. PubMed ID: 29045417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is the torpor-arousal cycle of hibernation controlled by a non-temperature-compensated circadian clock?
    Malan A
    J Biol Rhythms; 2010 Jun; 25(3):166-75. PubMed ID: 20484688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of dietary polyunsaturated fatty acids on mitochondrial metabolism in mammalian hibernation.
    Gerson AR; Brown JC; Thomas R; Bernards MA; Staples JF
    J Exp Biol; 2008 Aug; 211(Pt 16):2689-99. PubMed ID: 18689422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thrifty Females, Frisky Males: Winter Energetics of Hibernating Bats from a Cold Climate.
    Czenze ZJ; Jonasson KA; Willis CKR
    Physiol Biochem Zool; 2017; 90(4):502-511. PubMed ID: 28641050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diets rich in saturated and polyunsaturated fatty acids: metabolic shifting and cardiac health.
    Diniz YS; Cicogna AC; Padovani CR; Santana LS; Faine LA; Novelli EL
    Nutrition; 2004 Feb; 20(2):230-4. PubMed ID: 14962692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of caloric restriction on the body composition and hibernation of the golden-mantled ground squirrel (Spermophilus lateralis).
    Pulawa LK; Florant GL
    Physiol Biochem Zool; 2000; 73(5):538-46. PubMed ID: 11073788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.