These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 2504799)

  • 1. Effects of flecainide on defibrillation thresholds in the anesthetized dog.
    Hernandez R; Mann DE; Breckinridge S; Williams GR; Reiter MJ
    J Am Coll Cardiol; 1989 Sep; 14(3):777-81. PubMed ID: 2504799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ventricular fibrillation and defibrillation on pacing threshold in the anesthetized dog.
    Reiter MJ; Lindenfeld J; Tyndal CM; Breckinridge S; Mann DE
    J Am Coll Cardiol; 1989 Jan; 13(1):180-4. PubMed ID: 2909565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flecainide acetate does not alter the energy requirements for direct ventricular defibrillation using sequential pulse defibrillation in pigs.
    Szabo TS; Jones DL; McQuinn RL; Klein GJ
    J Cardiovasc Pharmacol; 1988 Oct; 12(4):377-83. PubMed ID: 2465436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between successful defibrillation and delivered energy in open-chest dogs: reappraisal of the "defibrillation threshold" concept.
    Davy JM; Fain ES; Dorian P; Winkle RA
    Am Heart J; 1987 Jan; 113(1):77-84. PubMed ID: 3799444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of flecainide on defibrillation threshold in pigs.
    Natale A; Jones DL; Kleinstiver PW; Kim YH; Wood GK; Klein GJ
    J Cardiovasc Pharmacol; 1993 Apr; 21(4):573-7. PubMed ID: 7681902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute effects of intravenous propafenone on the internal ventricular defibrillation threshold in the anesthetized dog.
    Peters W; Gang ES; Okazaki H; Solingen S; Kobayashi Y; Karagueuzian HS; Mandel WJ
    Am Heart J; 1991 Nov; 122(5):1355-60. PubMed ID: 1951000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of flecainide, encainide, and clofilium on ventricular refractory period extension by transcardiac shocks.
    Sweeney RJ; Gill RM; Steinberg MI; Reid PR
    Pacing Clin Electrophysiol; 1996 Jan; 19(1):50-60. PubMed ID: 8848377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The defibrillation threshold: a comparison of anesthetics and measurement methods.
    Gill RM; Sweeney RJ; Reid PR
    Pacing Clin Electrophysiol; 1993 Apr; 16(4 Pt 1):708-14. PubMed ID: 7683796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventricular fibrillation and defibrillation thresholds in sheep and dogs.
    Wan YK; Holley L; Einstein R
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Sep; 121(1):77-82. PubMed ID: 9883570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of lidocaine on relation between defibrillation threshold and upper limit of vulnerability in open-chest dogs.
    Topham SL; Cha YM; Peters BB; Chen PS
    Circulation; 1992 Mar; 85(3):1146-51. PubMed ID: 1537112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-pulse defibrillation using pulse separation based on the fibrillation cycle length.
    Sweeney RJ; Gill RM; Reid PR
    J Cardiovasc Electrophysiol; 1994 Sep; 5(9):761-70. PubMed ID: 7827715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lidocaine causes a reversible, concentration-dependent increase in defibrillation energy requirements.
    Dorian P; Fain ES; Davy JM; Winkle RA
    J Am Coll Cardiol; 1986 Aug; 8(2):327-32. PubMed ID: 3734254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Success rate versus defibrillation energy: temporal profile and the most efficient defibrillation threshold.
    Murakawa Y; Gliner BE; Thakor NV
    Am Heart J; 1989 Sep; 118(3):451-8. PubMed ID: 2773769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of quinidine and bretylium on defibrillation energy requirements.
    Dorian P; Fain ES; Davy JM; Winkle RA
    Am Heart J; 1986 Jul; 112(1):19-25. PubMed ID: 3728282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of lidocaine and mexiletine on defibrillation energy requirements in animals treated with flecainide.
    Sato S; Imagawa N
    Resuscitation; 1998 Mar; 36(3):175-80. PubMed ID: 9627068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DL and D sotalol decrease defibrillation energy requirements.
    Wang M; Dorian P
    Pacing Clin Electrophysiol; 1989 Sep; 12(9):1522-9. PubMed ID: 2476781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of an unsuccessful subthreshold shock on the energy requirement for the subsequent defibrillation.
    Murakawa Y; Gliner BE; Shankar B; Thakor NV
    Am Heart J; 1989 May; 117(5):1065-9. PubMed ID: 2711966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Barium decreases defibrillation energy requirements.
    Dorian P; Witkowski FX; Penkoske PA; Feder-Elituv RS
    J Cardiovasc Pharmacol; 1994 Jan; 23(1):107-12. PubMed ID: 7511721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The defibrillation success rate versus energy relationship: Part I--Curve fitting and the most efficient defibrillation energy.
    Gliner BE; Murakawa Y; Thakor NV
    Pacing Clin Electrophysiol; 1990 Mar; 13(3):326-38. PubMed ID: 1690405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of encainide and its metabolites on energy requirements for defibrillation.
    Fain ES; Dorian P; Davy JM; Kates RE; Winkle RA
    Circulation; 1986 Jun; 73(6):1334-41. PubMed ID: 3084128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.