These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 25048171)
21. Genome-wide investigation reveals high evolutionary rates in annual model plants. Yue JX; Li J; Wang D; Araki H; Tian D; Yang S BMC Plant Biol; 2010 Nov; 10():242. PubMed ID: 21062446 [TBL] [Abstract][Full Text] [Related]
22. Characterization and prediction of mRNA alternative polyadenylation sites in rice genes. Wu X; Zhao C; Su Y Biomed Mater Eng; 2014; 24(6):3779-85. PubMed ID: 25227094 [TBL] [Abstract][Full Text] [Related]
23. Genome-wide identification and characterization of putative cytochrome P450 genes in the model legume Medicago truncatula. Li L; Cheng H; Gai J; Yu D Planta; 2007 Jun; 226(1):109-23. PubMed ID: 17273868 [TBL] [Abstract][Full Text] [Related]
24. Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsis thaliana. Yan HH; Mudge J; Kim DJ; Shoemaker RC; Cook DR; Young ND Genome; 2004 Feb; 47(1):141-55. PubMed ID: 15060611 [TBL] [Abstract][Full Text] [Related]
25. The Arabidopsis HP6 gene is expressed in Medicago truncatula lateral roots and root nodule primordia. Moreira S; Braga T; Carvalho H; Campilho A Plant Signal Behav; 2013 Aug; 8(8):. PubMed ID: 23759550 [TBL] [Abstract][Full Text] [Related]
26. Sense and antisense transcripts of convergent gene pairs in Arabidopsis thaliana can share a common polyadenylation region. Zubko E; Kunova A; Meyer P PLoS One; 2011 Feb; 6(2):e16769. PubMed ID: 21311762 [TBL] [Abstract][Full Text] [Related]
27. Transcriptome dynamics through alternative polyadenylation in developmental and environmental responses in plants revealed by deep sequencing. Shen Y; Venu RC; Nobuta K; Wu X; Notibala V; Demirci C; Meyers BC; Wang GL; Ji G; Li QQ Genome Res; 2011 Sep; 21(9):1478-86. PubMed ID: 21813626 [TBL] [Abstract][Full Text] [Related]
28. Genome-Wide Profiling of Polyadenylation Events in Maize Using High-Throughput Transcriptomic Sequences. Jafar Z; Tariq S; Sadiq I; Nawaz T; Akhtar MN G3 (Bethesda); 2019 Aug; 9(8):2749-2760. PubMed ID: 31239292 [TBL] [Abstract][Full Text] [Related]
29. Cross-family translational genomics of abiotic stress-responsive genes between Arabidopsis and Medicago truncatula. Hyung D; Lee C; Kim JH; Yoo D; Seo YS; Jeong SC; Lee JH; Chung Y; Jung KH; Cook DR; Choi HK PLoS One; 2014; 9(3):e91721. PubMed ID: 24675968 [TBL] [Abstract][Full Text] [Related]
30. The Medicago truncatula Genome: Genomic Data Availability. Burks D; Azad R; Wen J; Dickstein R Methods Mol Biol; 2018; 1822():39-59. PubMed ID: 30043295 [TBL] [Abstract][Full Text] [Related]
31. Characterization and comparison of intron structure and alternative splicing between Medicago truncatula, Populus trichocarpa, Arabidopsis and rice. Baek JM; Han P; Iandolino A; Cook DR Plant Mol Biol; 2008 Jul; 67(5):499-510. PubMed ID: 18438730 [TBL] [Abstract][Full Text] [Related]
32. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. Szittya G; Moxon S; Santos DM; Jing R; Fevereiro MP; Moulton V; Dalmay T BMC Genomics; 2008 Dec; 9():593. PubMed ID: 19068109 [TBL] [Abstract][Full Text] [Related]
34. Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level. Chen L; Wang T; Zhao M; Zhang W Plant Sci; 2012 Mar; 184():14-9. PubMed ID: 22284705 [TBL] [Abstract][Full Text] [Related]
35. Genome-Wide Identification, Evolutionary Analysis and Expression Profiles of LATERAL ORGAN BOUNDARIES DOMAIN Gene Family in Lotus japonicus and Medicago truncatula. Yang T; Fang GY; He H; Chen J PLoS One; 2016; 11(8):e0161901. PubMed ID: 27560982 [TBL] [Abstract][Full Text] [Related]
36. Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Branca A; Paape TD; Zhou P; Briskine R; Farmer AD; Mudge J; Bharti AK; Woodward JE; May GD; Gentzbittel L; Ben C; Denny R; Sadowsky MJ; Ronfort J; Bataillon T; Young ND; Tiffin P Proc Natl Acad Sci U S A; 2011 Oct; 108(42):E864-70. PubMed ID: 21949378 [TBL] [Abstract][Full Text] [Related]
37. Genome-wide determination of poly(A) site choice in plants. Pati PK; Ma L; Hunt AG Methods Mol Biol; 2015; 1255():159-74. PubMed ID: 25487212 [TBL] [Abstract][Full Text] [Related]
38. Genome-Wide Identification and Expression Profiling Analysis of the Trihelix Gene Family Under Abiotic Stresses in Liu X; Zhang H; Ma L; Wang Z; Wang K Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33238556 [TBL] [Abstract][Full Text] [Related]
39. The lipoxygenase gene family: a genomic fossil of shared polyploidy between Glycine max and Medicago truncatula. Shin JH; Van K; Kim DH; Kim KD; Jang YE; Choi BS; Kim MY; Lee SH BMC Plant Biol; 2008 Dec; 8():133. PubMed ID: 19105811 [TBL] [Abstract][Full Text] [Related]
40. Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Ameline-Torregrosa C; Wang BB; O'Bleness MS; Deshpande S; Zhu H; Roe B; Young ND; Cannon SB Plant Physiol; 2008 Jan; 146(1):5-21. PubMed ID: 17981990 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]