These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 25048527)

  • 1. Basic features of a cell electroporation model: illustrative behavior for two very different pulses.
    Son RS; Smith KC; Gowrishankar TR; Vernier PT; Weaver JC
    J Membr Biol; 2014 Dec; 247(12):1209-28. PubMed ID: 25048527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of a large pore subpopulation during electroporating pulses.
    Smith KC; Son RS; Gowrishankar TR; Weaver JC
    Bioelectrochemistry; 2014 Dec; 100():3-10. PubMed ID: 24290730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell electrofusion based on nanosecond/microsecond pulsed electric fields.
    Li C; Ke Q; Yao C; Mi Y; Liu H; Lv Y; Yao C
    PLoS One; 2018; 13(5):e0197167. PubMed ID: 29795594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling a Conventional Electroporation Pulse Train: Decreased Pore Number, Cumulative Calcium Transport and an Example of Electrosensitization.
    Son RS; Gowrishankar TR; Smith KC; Weaver JC
    IEEE Trans Biomed Eng; 2016 Mar; 63(3):571-80. PubMed ID: 26302502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Cell Membrane Permeability In Vitro Part I: Transport Behavior Induced by Single-Pulse Electric Fields.
    Sweeney DC; Weaver JC; Davalos RV
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818792491. PubMed ID: 30236040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling electroporation in a single cell.
    Krassowska W; Filev PD
    Biophys J; 2007 Jan; 92(2):404-17. PubMed ID: 17056739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses.
    Smith KC; Weaver JC
    Biochem Biophys Res Commun; 2011 Aug; 412(1):8-12. PubMed ID: 21756883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process Analysis and Parameter Selection of Cardiomyocyte Electroporation Based on the Finite Element Method.
    Zhang H; Ji X; Zang L; Yan S; Wu X
    Cardiovasc Eng Technol; 2024 Feb; 15(1):22-38. PubMed ID: 37919538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation.
    Vasilkoski Z; Esser AT; Gowrishankar TR; Weaver JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021904. PubMed ID: 17025469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation.
    Gowrishankar TR; Weaver JC
    Biochem Biophys Res Commun; 2006 Oct; 349(2):643-53. PubMed ID: 16959217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation--relation between short-lived and long-lived pores.
    Pavlin M; Miklavcic D
    Bioelectrochemistry; 2008 Nov; 74(1):38-46. PubMed ID: 18499534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoelectropulse-driven membrane perturbation and small molecule permeabilization.
    Vernier PT; Sun Y; Gundersen MA
    BMC Cell Biol; 2006 Oct; 7():37. PubMed ID: 17052354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The estimation of pore size distribution of electroporated MCF-7 cell membrane.
    Eşmekaya MA; Gürsoy G; Coşkun A
    Electromagn Biol Med; 2024 Jul; 43(3):176-186. PubMed ID: 38900674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroporation of DC-3F cells is a dual process.
    Wegner LH; Frey W; Silve A
    Biophys J; 2015 Apr; 108(7):1660-1671. PubMed ID: 25863058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular electroporation site distributions: modeling examples for nsPEF and IRE pulse waveforms.
    Gowrishankar TR; Esser AT; Smith KC; Son RS; Weaver JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():732-5. PubMed ID: 22254414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport, resealing, and re-poration dynamics of two-pulse electroporation-mediated molecular delivery.
    Demiryurek Y; Nickaeen M; Zheng M; Yu M; Zahn JD; Shreiber DI; Lin H; Shan JW
    Biochim Biophys Acta; 2015 Aug; 1848(8):1706-14. PubMed ID: 25911207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Cell Membrane Permeability In Vitro Part II: Computational Model of Electroporation-Mediated Membrane Transport.
    Sweeney DC; Douglas TA; Davalos RV
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818792490. PubMed ID: 30231776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses.
    Nesin OM; Pakhomova ON; Xiao S; Pakhomov AG
    Biochim Biophys Acta; 2011 Mar; 1808(3):792-801. PubMed ID: 21182825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical energy required to form large conducting pores.
    Neu JC; Smith KC; Krassowska W
    Bioelectrochemistry; 2003 Aug; 60(1-2):107-14. PubMed ID: 12893316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement and simulation of Joule heating during treatment of B-16 melanoma tumors in mice with nanosecond pulsed electric fields.
    Pliquett U; Nuccitelli R
    Bioelectrochemistry; 2014 Dec; 100():62-8. PubMed ID: 24680133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.