These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25049360)

  • 1. Dissection of the control of anion homeostasis by associative transcriptomics in Brassica napus.
    Koprivova A; Harper AL; Trick M; Bancroft I; Kopriva S
    Plant Physiol; 2014 Sep; 166(1):442-50. PubMed ID: 25049360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes.
    Xu HM; Kong XD; Chen F; Huang JX; Lou XY; Zhao JY
    BMC Genomics; 2015 Oct; 16():858. PubMed ID: 26499887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of an updated Associative Transcriptomics platform for the polyploid crop species Brassica napus by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds.
    Havlickova L; He Z; Wang L; Langer S; Harper AL; Kaur H; Broadley MR; Gegas V; Bancroft I
    Plant J; 2018 Jan; 93(1):181-192. PubMed ID: 29124814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus.
    Li Y; Wang X; Zhang H; Wang S; Ye X; Shi L; Xu F; Ding G
    PLoS One; 2019; 14(7):e0220374. PubMed ID: 31344115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of Candidate Leaf Morphology Genes by Integration of QTL Mapping and RNA Sequencing Technologies in Oilseed Rape (Brassica napus L.).
    Jian H; Yang B; Zhang A; Zhang L; Xu X; Li J; Liu L
    PLoS One; 2017; 12(1):e0169641. PubMed ID: 28068426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combination of genome-wide association study and transcriptome analysis in leaf epidermis identifies candidate genes involved in cuticular wax biosynthesis in Brassica napus.
    Jin S; Zhang S; Liu Y; Jiang Y; Wang Y; Li J; Ni Y
    BMC Plant Biol; 2020 Oct; 20(1):458. PubMed ID: 33023503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus.
    Lu K; Xiao Z; Jian H; Peng L; Qu C; Fu M; He B; Tie L; Liang Y; Xu X; Li J
    Sci Rep; 2016 Nov; 6():36452. PubMed ID: 27811979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a novel associative transcriptomics pipeline in Brassica oleracea: identifying candidates for vernalisation response.
    Woodhouse S; He Z; Woolfenden H; Steuernagel B; Haerty W; Bancroft I; Irwin JA; Morris RJ; Wells R
    BMC Genomics; 2021 Jul; 22(1):539. PubMed ID: 34256693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of prior candidate genes for Sclerotinia local resistance in Brassica napus using Arabidopsis cDNA microarray and Brassica-Arabidopsis comparative mapping.
    Liu R; Zhao J; Xiao Y; Meng J
    Sci China C Life Sci; 2005 Oct; 48(5):460-70. PubMed ID: 16315597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus.
    Shi T; Li R; Zhao Z; Ding G; Long Y; Meng J; Xu F; Shi L
    PLoS One; 2013; 8(1):e54559. PubMed ID: 23382913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic architecture of glucosinolate variation in Brassica napus.
    Kittipol V; He Z; Wang L; Doheny-Adams T; Langer S; Bancroft I
    J Plant Physiol; 2019 Sep; 240():152988. PubMed ID: 31255878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus.
    Obermeier C; Hosseini B; Friedt W; Snowdon R
    BMC Genomics; 2009 Jul; 10():295. PubMed ID: 19575793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide association study reveals new genes involved in leaf trichome formation in polyploid oilseed rape (Brassica napus L.).
    Xuan L; Yan T; Lu L; Zhao X; Wu D; Hua S; Jiang L
    Plant Cell Environ; 2020 Mar; 43(3):675-691. PubMed ID: 31889328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence-level comparative analysis of the Brassica napus genome around two stearoyl-ACP desaturase loci.
    Cho K; O'Neill CM; Kwon SJ; Yang TJ; Smooker AM; Fraser F; Bancroft I
    Plant J; 2010 Feb; 61(4):591-9. PubMed ID: 19929877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Wide Identification and Comparative Expression Profile Analysis of the Long-Chain Acyl-CoA synthetase (LACS) Gene Family in Two Different Oil Content Cultivars of Brassica napus.
    Xiao Z; Li N; Wang S; Sun J; Zhang L; Zhang C; Yang H; Zhao H; Yang B; Wei L; Du H; Qu C; Lu K; Li J
    Biochem Genet; 2019 Dec; 57(6):781-800. PubMed ID: 31011871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Associative transcriptomics study dissects the genetic architecture of seed glucosinolate content in Brassica napus.
    Lu G; Harper AL; Trick M; Morgan C; Fraser F; O'Neill C; Bancroft I
    DNA Res; 2014 Dec; 21(6):613-25. PubMed ID: 25030463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genome and transcriptome analysis unravels key factors of nitrogen use efficiency in Brassica napus L.
    Li Q; Ding G; Yang N; White PJ; Ye X; Cai H; Lu J; Shi L; Xu F
    Plant Cell Environ; 2020 Mar; 43(3):712-731. PubMed ID: 31759338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed.
    Auger B; Baron C; Lucas MO; Vautrin S; Bergès H; Chalhoub B; Fautrel A; Renard M; Nesi N
    Planta; 2009 Nov; 230(6):1167-83. PubMed ID: 19760260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers.
    Carlsson J; Lagercrantz U; Sundström J; Teixeira R; Wellmer F; Meyerowitz EM; Glimelius K
    Plant J; 2007 Feb; 49(3):452-62. PubMed ID: 17217466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus.
    Wang G; Ding G; Li L; Cai H; Ye X; Zou J; Xu F
    Ann Bot; 2014 Sep; 114(3):549-59. PubMed ID: 24989788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.