These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25049385)

  • 1. Impact of DNA3'pp5'G capping on repair reactions at DNA 3' ends.
    Das U; Chauleau M; Ordonez H; Shuman S
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11317-22. PubMed ID: 25049385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA3'pp5'G de-capping activity of aprataxin: effect of cap nucleoside analogs and structural basis for guanosine recognition.
    Chauleau M; Jacewicz A; Shuman S
    Nucleic Acids Res; 2015 Jul; 43(12):6075-83. PubMed ID: 26007660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of 3'-Phosphate RNA Ligase Paralogs RtcB1, RtcB2, and RtcB3 from Myxococcus xanthus Highlights DNA and RNA 5'-Phosphate Capping Activity of RtcB3.
    Maughan WP; Shuman S
    J Bacteriol; 2015 Nov; 197(22):3616-24. PubMed ID: 26350128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rewriting the rules for end joining via enzymatic splicing of DNA 3'-PO4 and 5'-OH ends.
    Das U; Chakravarty AK; Remus BS; Shuman S
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20437-42. PubMed ID: 24218597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of DNA3'pp5'G capping on 3' end repair reactions and of an embedded pyrophosphate-linked guanylate on ribonucleotide surveillance.
    Chauleau M; Das U; Shuman S
    Nucleic Acids Res; 2015 Mar; 43(6):3197-207. PubMed ID: 25753667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA ligase RtcB splices 3'-phosphate and 5'-OH ends via covalent RtcB-(histidinyl)-GMP and polynucleotide-(3')pp(5')G intermediates.
    Chakravarty AK; Subbotin R; Chait BT; Shuman S
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6072-7. PubMed ID: 22474365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases.
    Cowart M; Gibson KJ; Allen DJ; Benkovic SJ
    Biochemistry; 1989 Mar; 28(5):1975-83. PubMed ID: 2541768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme action at 3' termini of ionizing radiation-induced DNA strand breaks.
    Henner WD; Grunberg SM; Haseltine WA
    J Biol Chem; 1983 Dec; 258(24):15198-205. PubMed ID: 6361028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-repair reactions by purified HeLa DNA polymerases and exonucleases.
    Randahl H; Elliott GC; Linn S
    J Biol Chem; 1988 Sep; 263(25):12228-34. PubMed ID: 2842325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis by DNA polymerase I on bleomycin-treated deoxyribonucleic acid: a requirement for exonuclease III.
    Niwa O; Moses RE
    Biochemistry; 1981 Jan; 20(2):238-44. PubMed ID: 6162481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Completion of mammalian lagging strand DNA replication using purified proteins.
    Turchi JJ; Bambara RA
    J Biol Chem; 1993 Jul; 268(20):15136-41. PubMed ID: 8392066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New rapid methods for DNA sequencing based in exonuclease III digestion followed by repair synthesis.
    Guo LH; Wu R
    Nucleic Acids Res; 1982 Mar; 10(6):2065-84. PubMed ID: 6281730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing DNA polymerase-DNA interactions: examining the template strand in exonuclease complexes using 2-aminopurine fluorescence and acrylamide quenching.
    Tleugabulova D; Reha-Krantz LJ
    Biochemistry; 2007 Jun; 46(22):6559-69. PubMed ID: 17497891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro repair of radiation-induced strand breaks in DNA.
    Mitzel-Landbeck L; Schutz G; Hagen U
    Biochim Biophys Acta; 1976 May; 432(2):145-53. PubMed ID: 773432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA polymerase mutagenic bypass and proofreading of endogenous DNA lesions.
    Eckert KA; Opresko PL
    Mutat Res; 1999 Mar; 424(1-2):221-36. PubMed ID: 10064863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accessory proteins assist exonuclease-deficient bacteriophage T4 DNA polymerase in replicating past an abasic site.
    Blanca G; Delagoutte E; Tanguy le Gac N; Johnson NP; Baldacci G; Villani G
    Biochem J; 2007 Mar; 402(2):321-9. PubMed ID: 17064253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bridging the gap. Joining of nonhomologous ends by DNA polymerases.
    King JS; Fairley CF; Morgan WF
    J Biol Chem; 1994 May; 269(18):13061-4. PubMed ID: 8175727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of SpPol4, a unique X-family DNA polymerase in Schizosaccharomyces pombe.
    González-Barrera S; Sánchez A; Ruiz JF; Juárez R; Picher AJ; Terrados G; Andrade P; Blanco L
    Nucleic Acids Res; 2005; 33(15):4762-74. PubMed ID: 16120966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4.
    Capson TL; Peliska JA; Kaboord BF; Frey MW; Lively C; Dahlberg M; Benkovic SJ
    Biochemistry; 1992 Nov; 31(45):10984-94. PubMed ID: 1332748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of aprataxin ortholog Hnt3 reveal the mechanism for reversal of 5'-adenylated DNA.
    Gong Y; Zhu D; Ding J; Dou CN; Ren X; Gu L; Jiang T; Wang DC
    Nat Struct Mol Biol; 2011 Oct; 18(11):1297-9. PubMed ID: 21984208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.