BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25050159)

  • 1. Investigation of Cardiovascular Effects of Tetrahydro-β-carboline sstr3 antagonists.
    He S; Lai Z; Ye Z; Dobbelaar PH; Shah SK; Truong Q; Du W; Guo L; Liu J; Jian T; Qi H; Bakshi RK; Hong Q; Dellureficio J; Reibarkh M; Samuel K; Reddy VB; Mitelman S; Tong SX; Chicchi GG; Tsao KL; Trusca D; Wu M; Shao Q; Trujillo ME; Fernandez G; Nelson D; Bunting P; Kerr J; Fitzgerald P; Morissette P; Volksdorf S; Eiermann GJ; Li C; Zhang B; Howard AD; Zhou YP; Nargund RP; Hagmann WK
    ACS Med Chem Lett; 2014 Jul; 5(7):748-53. PubMed ID: 25050159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAR exploration at the C-3 position of tetrahydro-β-carboline sstr3 antagonists.
    He S; Dobbelaar PH; Guo L; Ye Z; Liu J; Jian T; Truong Q; Shah SK; Du W; Qi H; Bakshi RK; Hong Q; Dellureficio JD; Sherer E; Pasternak A; Feng Z; Reibarkh M; Lin M; Samuel K; Reddy VB; Mitelman S; Tong SX; Chicchi GG; Tsao KL; Trusca D; Wu M; Shao Q; Trujillo ME; Fernandez G; Nelson D; Bunting P; Kerr J; Fitzgerald P; Morissette P; Volksdorf S; Eiermann GJ; Li C; Zhang BB; Howard AD; Zhou YP; Nargund RP; Hagmann WK
    Bioorg Med Chem Lett; 2016 Mar; 26(6):1529-1535. PubMed ID: 26898814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of MK-1421, a Potent, Selective sstr3 Antagonist, as a Development Candidate for Type 2 Diabetes.
    Shah SK; He S; Guo L; Truong Q; Qi H; Du W; Lai Z; Liu J; Jian T; Hong Q; Dobbelaar P; Ye Z; Sherer E; Feng Z; Yu Y; Wong F; Samuel K; Madiera M; Karanam BV; Reddy VB; Mitelman S; Tong SX; Chicchi GG; Tsao KL; Trusca D; Feng Y; Wu M; Shao Q; Trujillo ME; Eiermann GJ; Li C; Pachanski M; Fernandez G; Nelson D; Bunting P; Morissette P; Volksdorf S; Kerr J; Zhang BB; Howard AD; Zhou YP; Pasternak A; Nargund RP; Hagmann WK
    ACS Med Chem Lett; 2015 May; 6(5):513-7. PubMed ID: 26005524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of autoimmune response to the extracellular loop of the HERG channel pore induces QTc prolongation in guinea-pigs.
    Fabris F; Yue Y; Qu Y; Chahine M; Sobie E; Lee P; Wieczorek R; Jiang XC; Capecchi PL; Laghi-Pasini F; Lazzerini PE; Boutjdir M
    J Physiol; 2016 Nov; 594(21):6175-6187. PubMed ID: 27296897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The anesthetized guinea pig: an effective early cardiovascular derisking and lead optimization model.
    Morissette P; Nishida M; Trepakova E; Imredy J; Lagrutta A; Chaves A; Hoagland K; Hoe CM; Zrada MM; Travis JJ; Zingaro GJ; Gerenser P; Friedrichs G; Salata JJ
    J Pharmacol Toxicol Methods; 2013; 68(1):137-49. PubMed ID: 23649000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-induced QT prolongation: Concordance of preclinical anesthetized canine model in relation to published clinical observations for ten CiPA drugs.
    Koshman YE; Wilsey AS; Bird BM; Endemann AL; Sadilek S; Treadway J; Martin RL; Polakowski JS; Gintant GA; Mittelstadt SW
    J Pharmacol Toxicol Methods; 2020; 103():106871. PubMed ID: 32360993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Discovery of MK-4256, a Potent SSTR3 Antagonist as a Potential Treatment of Type 2 Diabetes.
    He S; Ye Z; Truong Q; Shah S; Du W; Guo L; Dobbelaar PH; Lai Z; Liu J; Jian T; Qi H; Bakshi RK; Hong Q; Dellureficio J; Pasternak A; Feng Z; deJesus R; Yang L; Reibarkh M; Bradley SA; Holmes MA; Ball RG; Ruck RT; Huffman MA; Wong F; Samuel K; Reddy VB; Mitelman S; Tong SX; Chicchi GG; Tsao KL; Trusca D; Wu M; Shao Q; Trujillo ME; Eiermann GJ; Li C; Zhang BB; Howard AD; Zhou YP; Nargund RP; Hagmann WK
    ACS Med Chem Lett; 2012 Jun; 3(6):484-9. PubMed ID: 24900499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can non-clinical repolarization assays predict the results of clinical thorough QT studies? Results from a research consortium.
    Park E; Gintant GA; Bi D; Kozeli D; Pettit SD; Pierson JB; Skinner M; Willard J; Wisialowski T; Koerner J; Valentin JP
    Br J Pharmacol; 2018 Feb; 175(4):606-617. PubMed ID: 29181850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BeKm-1, a peptide inhibitor of human ether-a-go-go-related gene potassium currents, prolongs QTc intervals in isolated rabbit heart.
    Qu Y; Fang M; Gao B; Chui RW; Vargas HM
    J Pharmacol Exp Ther; 2011 Apr; 337(1):2-8. PubMed ID: 21205913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxycodone is associated with dose-dependent QTc prolongation in patients and low-affinity inhibiting of hERG activity in vitro.
    Fanoe S; Jensen GB; Sjøgren P; Korsgaard MP; Grunnet M
    Br J Clin Pharmacol; 2009 Feb; 67(2):172-9. PubMed ID: 19159406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Analysis of the Relationship Between Preclinical and Clinical QT Interval-Related Data.
    Pollard CE; Skinner M; Lazic SE; Prior HM; Conlon KM; Valentin JP; Dota C
    Toxicol Sci; 2017 Sep; 159(1):94-101. PubMed ID: 28903488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacokinetic-pharmacodynamic modelling of drug-induced QTc interval prolongation in man: prediction from in vitro human ether-à-go-go-related gene binding and functional inhibition assays and conscious dog studies.
    Dubois VF; Casarotto E; Danhof M; Della Pasqua O
    Br J Pharmacol; 2016 Oct; 173(19):2819-32. PubMed ID: 27427789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of hERG current assay performance: Translating preclinical safety studies to clinical QT prolongation.
    Gintant G
    Pharmacol Ther; 2011 Feb; 129(2):109-19. PubMed ID: 20807552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of probucol, a typical hERG expression inhibitor, on in vivo QT interval prolongation in conscious dogs.
    Nogawa H; Kawai T; Yajima M; Miura M; Ogawa T; Murakami K
    Eur J Pharmacol; 2013 Nov; 720(1-3):29-37. PubMed ID: 24211675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of novel somatostatin receptor subtype 5 (SSTR5) antagonists: Pharmacological studies and design to improve pharmacokinetic profiles and human Ether-a-go-go-related gene (hERG) inhibition.
    Yamasaki T; Hirose H; Yamashita T; Takakura N; Morimoto S; Nakahata T; Kina A; Nakano Y; Okano Tamura Y; Sugama J; Odani T; Shimizu Y; Iwasaki S; Watanabe M; Maekawa T; Kasai S
    Bioorg Med Chem; 2017 Aug; 25(15):4153-4162. PubMed ID: 28622905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacokinetic-pharmacodynamic modelling of the effect of Moxifloxacin on QTc prolongation in telemetered cynomolgus monkeys.
    Watson KJ; Gorczyca WP; Umland J; Zhang Y; Chen X; Sun SZ; Fermini B; Holbrook M; Van Der Graaf PH
    J Pharmacol Toxicol Methods; 2011; 63(3):304-13. PubMed ID: 21419854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a systems pharmacology model for translational prediction of hERG-mediated QTc prolongation.
    Gotta V; Yu Z; Cools F; van Ammel K; Gallacher DJ; Visser SA; Sannajust F; Morissette P; Danhof M; van der Graaf PH
    Pharmacol Res Perspect; 2016 Dec; 4(6):e00270. PubMed ID: 28097003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative pharmacology of guinea pig cardiac myocyte and cloned hERG (I(Kr)) channel.
    Davie C; Pierre-Valentin J; Pollard C; Standen N; Mitcheson J; Alexander P; Thong B
    J Cardiovasc Electrophysiol; 2004 Nov; 15(11):1302-9. PubMed ID: 15574182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of QT prolongation by buprenorphine cannot be explained by direct hERG channel block.
    Tran PN; Sheng J; Randolph AL; Baron CA; Thiebaud N; Ren M; Wu M; Johannesen L; Volpe DA; Patel D; Blinova K; Strauss DG; Wu WW
    PLoS One; 2020; 15(11):e0241362. PubMed ID: 33157550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a crucial modulating role of the sodium channel in the QTc prolongation related to antipsychotics.
    Silvestre JS; O'Neill MF; Prous JR
    J Psychopharmacol; 2014 Apr; 28(4):329-40. PubMed ID: 24327451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.