These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25050218)

  • 1. Discovering cancer immunotherapy targets in vivo.
    Zhou P; Wucherpfennig KW
    Oncoimmunology; 2014; 3():e28500. PubMed ID: 25050218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An unbiased in vivo functional genomics screening approach in mice identifies novel tumor cell-based regulators of immune rejection.
    Shuptrine CW; Ajina R; Fertig EJ; Jablonski SA; Kim Lyerly H; Hartman ZC; Weiner LM
    Cancer Immunol Immunother; 2017 Dec; 66(12):1529-1544. PubMed ID: 28770278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding pooled RNAi screens by means of barcode tiling arrays.
    Boettcher M; Fredebohm J; Gholami AM; Hachmo Y; Dotan I; Canaani D; Hoheisel JD
    BMC Genomics; 2010 Jan; 11():7. PubMed ID: 20051122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TransKingdom RNA interference: a bacterial approach to challenges in RNAi therapy and delivery.
    Keates AC; Fruehauf J; Xiang S; Li CJ
    Biotechnol Genet Eng Rev; 2008; 25():113-27. PubMed ID: 21412352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pooled RNAi Screens - Technical and Biological Aspects.
    Boettcher M; Hoheisel JD
    Curr Genomics; 2010 May; 11(3):162-7. PubMed ID: 21037854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next-generation libraries for robust RNA interference-based genome-wide screens.
    Kampmann M; Horlbeck MA; Chen Y; Tsai JC; Bassik MC; Gilbert LA; Villalta JE; Kwon SC; Chang H; Kim VN; Weissman JS
    Proc Natl Acad Sci U S A; 2015 Jun; 112(26):E3384-91. PubMed ID: 26080438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput analysis of an RNAi library identifies novel kinase targets in Trypanosoma brucei.
    Mackey ZB; Koupparis K; Nishino M; McKerrow JH
    Chem Biol Drug Des; 2011 Sep; 78(3):454-63. PubMed ID: 21668652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A primer on using pooled shRNA libraries for functional genomic screens.
    Hu G; Luo J
    Acta Biochim Biophys Sin (Shanghai); 2012 Feb; 44(2):103-12. PubMed ID: 22271906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cellular high-throughput screening approach for therapeutic trans-cleaving ribozymes and RNAi against arbitrary mRNA disease targets.
    Yau EH; Butler MC; Sullivan JM
    Exp Eye Res; 2016 Oct; 151():236-55. PubMed ID: 27233447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target discovery screens using pooled shRNA libraries and next-generation sequencing: A model workflow and analytical algorithm.
    Schaefer C; Mallela N; Seggewiß J; Lechtape B; Omran H; Dirksen U; Korsching E; Potratz J
    PLoS One; 2018; 13(1):e0191570. PubMed ID: 29385199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging role of RNA interference in immune cells engineering and its therapeutic synergism in immunotherapy.
    Monty MA; Islam MA; Nan X; Tan J; Tuhin IJ; Tang X; Miao M; Wu D; Yu L
    Br J Pharmacol; 2021 Apr; 178(8):1741-1755. PubMed ID: 33608889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative in vivo whole genome motility screen reveals novel therapeutic targets to block cancer metastasis.
    Stoletov K; Willetts L; Paproski RJ; Bond DJ; Raha S; Jovel J; Adam B; Robertson AE; Wong F; Woolner E; Sosnowski DL; Bismar TA; Wong GK; Zijlstra A; Lewis JD
    Nat Commun; 2018 Jun; 9(1):2343. PubMed ID: 29904055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forward RNAi screens in human stem cells.
    Karlsson C; Larsson J; Baudet A
    Methods Mol Biol; 2010; 650():29-43. PubMed ID: 20686941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA interference: ready to silence cancer?
    Mocellin S; Costa R; Nitti D
    J Mol Med (Berl); 2006 Jan; 84(1):4-15. PubMed ID: 16283143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo RNAi screens: concepts and applications.
    Crotty S; Pipkin ME
    Trends Immunol; 2015 May; 36(5):315-22. PubMed ID: 25937561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.
    DeVincenzo JP
    Early Hum Dev; 2009 Oct; 85(10 Suppl):S31-5. PubMed ID: 19833462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An RNAi-based high-throughput screening assay to identify small molecule inhibitors of hepatitis B virus replication.
    Ghosh S; Kaushik A; Khurana S; Varshney A; Singh AK; Dahiya P; Thakur JK; Sarin SK; Gupta D; Malhotra P; Mukherjee SK; Bhatnagar RK
    J Biol Chem; 2017 Jul; 292(30):12577-12588. PubMed ID: 28584057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size unbiased representative enzymatically generated RNAi (SURER) library and application for RNAi therapeutic screens.
    Li T; Zhu YY; Chen L; Sun Y; Yuan J; Graham M; French P
    Nucleic Acid Ther; 2015 Feb; 25(1):35-46. PubMed ID: 25493330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA interference screening to detect targetable molecules in hematopoietic stem cells.
    Karlsson C; Rak J; Larsson J
    Curr Opin Hematol; 2014 Jul; 21(4):283-8. PubMed ID: 24811164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A recombinase-based palindrome generator capable of producing randomized shRNA libraries.
    Nichols M; Steinman RA
    J Biotechnol; 2009 Aug; 143(2):79-84. PubMed ID: 19539675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.