These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25050218)

  • 21. A recombinase-based palindrome generator capable of producing randomized shRNA libraries.
    Nichols M; Steinman RA
    J Biotechnol; 2009 Aug; 143(2):79-84. PubMed ID: 19539675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulating the Crosstalk between the Tumor and Its Microenvironment Using RNA Interference: A Treatment Strategy for Hepatocellular Carcinoma.
    Mroweh M; Decaens T; Marche PN; Macek Jilkova Z; Clément F
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32722054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling Tumor Immunology and Immunotherapy in Mice.
    Buqué A; Galluzzi L
    Trends Cancer; 2018 Sep; 4(9):599-601. PubMed ID: 30149876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.
    Allan KJ; Mahoney DJ; Baird SD; Lefebvre CA; Stojdl DF
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29683442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The promise, pitfalls and progress of RNA-interference-based antiviral therapy for respiratory viruses.
    DeVincenzo JP
    Antivir Ther; 2012; 17(1 Pt B):213-25. PubMed ID: 22311654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Vitro High-Throughput RNAi Screening to Accelerate the Process of Target Identification and Drug Development.
    Yin H; Kassner M
    Methods Mol Biol; 2016; 1470():137-49. PubMed ID: 27581290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA vector-based RNA interference to study gene function in cancer.
    Stovall DB; Wan M; Zhang Q; Dubey P; Sui G
    J Vis Exp; 2012 Jun; (64):e4129. PubMed ID: 22710444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo application of RNA interference: from functional genomics to therapeutics.
    Lu PY; Xie F; Woodle MC
    Adv Genet; 2005; 54():117-42. PubMed ID: 16096010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo discovery of immunotherapy targets in the tumour microenvironment.
    Zhou P; Shaffer DR; Alvarez Arias DA; Nakazaki Y; Pos W; Torres AJ; Cremasco V; Dougan SK; Cowley GS; Elpek K; Brogdon J; Lamb J; Turley SJ; Ploegh HL; Root DE; Love JC; Dranoff G; Hacohen N; Cantor H; Wucherpfennig KW
    Nature; 2014 Feb; 506(7486):52-7. PubMed ID: 24476824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forward RNAi Screens in Human Hematopoietic Stem Cells.
    Galeev R; Karlsson C; Baudet A; Larsson J
    Methods Mol Biol; 2017; 1622():29-50. PubMed ID: 28674799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput RNAi screening for the identification of novel targets.
    Henderson MC; Azorsa DO
    Methods Mol Biol; 2013; 986():89-95. PubMed ID: 23436407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA interference strategies as therapy for respiratory viral infections.
    DeVincenzo JP
    Pediatr Infect Dis J; 2008 Oct; 27(10 Suppl):S118-22. PubMed ID: 18820571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective gene silencing by viral delivery of short hairpin RNA.
    Sliva K; Schnierle BS
    Virol J; 2010 Sep; 7():248. PubMed ID: 20858246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen.
    Oliver D; Ji H; Liu P; Gasparian A; Gardiner E; Lee S; Zenteno A; Perinskaya LO; Chen M; Buckhaults P; Broude E; Wyatt MD; Valafar H; Peña E; Shtutman M
    Sci Rep; 2017 Feb; 7():43023. PubMed ID: 28223711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA Interference Using c-Myc-Conjugated Nanoparticles Suppresses Breast and Colorectal Cancer Models.
    Tangudu NK; Verma VK; Clemons TD; Beevi SS; Hay T; Mahidhara G; Raja M; Nair RA; Alexander LE; Patel AB; Jose J; Smith NM; Zdyrko B; Bourdoncle A; Luzinov I; Iyer KS; Clarke AR; Dinesh Kumar L
    Mol Cancer Ther; 2015 May; 14(5):1259-69. PubMed ID: 25695957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A high-throughput RNAi screen for detection of immune-checkpoint molecules that mediate tumor resistance to cytotoxic T lymphocytes.
    Khandelwal N; Breinig M; Speck T; Michels T; Kreutzer C; Sorrentino A; Sharma AK; Umansky L; Conrad H; Poschke I; Offringa R; König R; Bernhard H; Machlenkin A; Boutros M; Beckhove P
    EMBO Mol Med; 2015 Apr; 7(4):450-63. PubMed ID: 25691366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNA Interference (RNAi)-Based Therapeutics: Delivering on the Promise?
    Bobbin ML; Rossi JJ
    Annu Rev Pharmacol Toxicol; 2016; 56():103-22. PubMed ID: 26738473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic screens to study the immune system in cancer.
    Wucherpfennig KW; Cartwright AN
    Curr Opin Immunol; 2016 Aug; 41():55-61. PubMed ID: 27309352
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNAi Therapeutics in Autoimmune Disease.
    Pauley KM; Cha S
    Pharmaceuticals (Basel); 2013 Mar; 6(3):287-94. PubMed ID: 24276020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large-Scale RNA Interference Screening to Identify Transcriptional Regulators of a Tumor Suppressor Gene.
    Forloni M; Ho T; Sun L; Wajapeyee N
    Methods Mol Biol; 2017; 1507():261-268. PubMed ID: 27832546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.