BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25050421)

  • 1. Facile synthesis of exfoliated Co-Al LDH-carbon nanotube composites with high performance as supercapacitor electrodes.
    Yu L; Shi N; Liu Q; Wang J; Yang B; Wang B; Yan H; Sun Y; Jing X
    Phys Chem Chem Phys; 2014 Sep; 16(33):17936-42. PubMed ID: 25050421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced graphene oxide/Ni(1-x)Co(x)Al-layered double hydroxide composites: preparation and high supercapacitor performance.
    Xu J; Gai S; He F; Niu N; Gao P; Chen Y; Yang P
    Dalton Trans; 2014 Aug; 43(30):11667-75. PubMed ID: 24950435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: understanding the role of nano-structured carbon.
    Yu C; Yang J; Zhao C; Fan X; Wang G; Qiu J
    Nanoscale; 2014 Mar; 6(6):3097-104. PubMed ID: 24362881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative intercalation for monometallic Ni(2+) -Ni(3+) layered double hydroxide and enhanced capacitance in exfoliated nanosheets.
    Gu F; Cheng X; Wang S; Wang X; Lee PS
    Small; 2015 May; 11(17):2044-50. PubMed ID: 25504943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors.
    Yang W; Gao Z; Wang J; Ma J; Zhang M; Liu L
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5443-54. PubMed ID: 23647434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layer-by-layer engineered Co-Al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor.
    Dong X; Wang L; Wang D; Li C; Jin J
    Langmuir; 2012 Jan; 28(1):293-8. PubMed ID: 22124210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast growth of carbon nanotubes on graphene for capacitive energy storage.
    Li Z; Yang B; Su Y; Wang H; Groeper J
    Nanotechnology; 2016 Jan; 27(2):025401. PubMed ID: 26630480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile one-step synthesis of nanocomposite based on carbon nanotubes and Nickel-Aluminum layered double hydroxides with high cycling stability for supercapacitors.
    Bai C; Sun S; Xu Y; Yu R; Li H
    J Colloid Interface Sci; 2016 Oct; 480():57-62. PubMed ID: 27405071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile assembly of Ni-Co hydroxide nanoflakes on carbon nanotube network with highly electrochemical capacitive performance.
    Chen H; Cai F; Kang Y; Zeng S; Chen M; Li Q
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19630-7. PubMed ID: 25314093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Fabrication of Nickel Aluminum Layered Double Hydroxide/Carbon Nanotube Electrodes Toward High-Performance Supercapacitors.
    Luo K; Zhang J; Chu W; Chen H
    ACS Omega; 2020 Sep; 5(38):24693-24699. PubMed ID: 33015486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen-enriched, double-shelled carbon/layered double hydroxide hollow microspheres for excellent electrochemical performance.
    Xu J; He F; Gai S; Zhang S; Li L; Yang P
    Nanoscale; 2014 Sep; 6(18):10887-95. PubMed ID: 25117560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembling exfoliated layered double hydroxide (LDH) nanosheet/carbon nanotube (CNT) hybrids via electrostatic force and fabricating nylon nanocomposites.
    Huang S; Peng H; Tjiu WW; Yang Z; Zhu H; Tang T; Liu T
    J Phys Chem B; 2010 Dec; 114(50):16766-72. PubMed ID: 21126035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of Ni-Mn layered double hydroxide/carbon composites with different morphologies for supercapacitors.
    Li M; Liu F; Zhang XB; Cheng JP
    Phys Chem Chem Phys; 2016 Nov; 18(43):30068-30078. PubMed ID: 27775113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes.
    Zhang LL; Zhao S; Tian XN; Zhao XS
    Langmuir; 2010 Nov; 26(22):17624-8. PubMed ID: 20961127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Doped yolk-shell carbon nanotube composite for enhanced electrochemical performance in a supercapacitor.
    Du J; Liu L; Wu H; Chen A
    Nanoscale; 2019 Dec; 11(47):22796-22803. PubMed ID: 31748771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-Doped Carbon Nanotube Spherical Particles for Supercapacitor Applications: Emulsion-Assisted Compact Packing and Capacitance Enhancement.
    Gueon D; Moon JH
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20083-9. PubMed ID: 26325508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile preparation of 3D hierarchical coaxial-cable-like Ni-CNTs@beta-(Ni, Co) binary hydroxides for supercapacitors with ultrahigh specific capacitance.
    Zhang M; Ma X; Bi H; Zhao X; Wang C; Zhang J; Li Y; Che R
    J Colloid Interface Sci; 2017 Sep; 502():33-43. PubMed ID: 28477467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis of three dimensional hierarchical Co-Al layered double hydroxides on graphene as high-performance materials for supercapacitor electrode.
    Hao J; Yang W; Zhang Z; Lu B; Ke X; Zhang B; Tang J
    J Colloid Interface Sci; 2014 Jul; 426():131-6. PubMed ID: 24863775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous assembly of Ni-Co layered double hydroxide/sulfonated graphene nanosheet composites as battery-type materials for hybrid supercapacitors.
    Tian H; Zhu K; Jiang Y; Wang L; Li W; Yu Z; Wu C
    Nanoscale Adv; 2021 May; 3(10):2924-2933. PubMed ID: 36134181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of NiAl-layered double hydroxide/graphene hybrid with enhanced electrochemical properties for detection of dopamine.
    Li M; Zhu JE; Zhang L; Chen X; Zhang H; Zhang F; Xu S; Evans DG
    Nanoscale; 2011 Oct; 3(10):4240-6. PubMed ID: 21853213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.