BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 25050459)

  • 1. Lipophilic contaminants influence cold tolerance of invertebrates through changes in cell membrane fluidity.
    Holmstrup M; Bouvrais H; Westh P; Wang C; Slotsbo S; Waagner D; Enggrob K; Ipsen JH
    Environ Sci Technol; 2014 Aug; 48(16):9797-803. PubMed ID: 25050459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in membrane phospholipids as a mechanistic explanation for decreased freeze tolerance in earthworms exposed to sublethal copper concentrations.
    Bindesbøl AM; Bayley M; Damgaard C; Hedlund K; Holmstrup M
    Environ Sci Technol; 2009 Jul; 43(14):5495-500. PubMed ID: 19708387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substituted phenols as pollutants that affect membrane fluidity.
    Nunes C; Sousa C; Ferreira H; Lucio M; Lima JL; Tavares J; Cordeiro-da-Silva A; Reis S
    J Environ Biol; 2008 Sep; 29(5):733-8. PubMed ID: 19295073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury (Hg
    Gerlich HS; Holmstrup M; Bjerregaard P; Slotsbo S
    Ecotoxicol Environ Saf; 2020 Nov; 204():111005. PubMed ID: 32738624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug tolerance and biomembranes.
    Chin JH; Goldstein DB
    Biomedicine; 1978; 28(3):141-3. PubMed ID: 698336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of lysosomal and cell membranes in haemocytes of the common mussel (Mytilus edulis): effect of low temperatures.
    Camus L; Grøsvik BE; Børseth JF; Jones MB; Depledge MH
    Mar Environ Res; 2000; 50(1-5):325-9. PubMed ID: 11460712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking membrane physical properties and low temperature tolerance in arthropods.
    Waagner D; Bouvrais H; Ipsen JH; Holmstrup M
    Cryobiology; 2013 Dec; 67(3):383-5. PubMed ID: 24080490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane fluidity and hemilayer temperature sensitivity in trout hepatocytes during brief in vitro cold exposure.
    Williams EE; Hazel JR
    Am J Physiol; 1994 Mar; 266(3 Pt 2):R773-80. PubMed ID: 8160870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of acclimation temperature on enzymatic capacities and mitochondrial membranes from the body wall of the earthworm Lumbricus terrestris.
    Crockett EL; Dougherty BE; McNamer AN
    Comp Biochem Physiol B Biochem Mol Biol; 2001 Oct; 130(3):419-26. PubMed ID: 11567905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress synergy between environmentally realistic levels of copper and frost in the earthworm Dendrobaena octaedra.
    Bindesbøl AM; Holmstrup M; Damgaard C; Bayley M
    Environ Toxicol Chem; 2005 Jun; 24(6):1462-7. PubMed ID: 16117123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidation of biphasic alterations on acetylcholinesterase (AChE) activity and membrane fluidity in the structure-functional effects of tetracaine on AChE-associated membrane vesicles.
    Chen CH; Zuklie BM; Roth LG
    Arch Biochem Biophys; 1998 Mar; 351(1):135-40. PubMed ID: 9500847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ENaC-membrane interactions: regulation of channel activity by membrane order.
    Awayda MS; Shao W; Guo F; Zeidel M; Hill WG
    J Gen Physiol; 2004 Jun; 123(6):709-27. PubMed ID: 15148329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid adaptation to neuronal membrane effects of ethanol and low temperature: some speculations on mechanism.
    Barondes SH; Traynor ME; Schlapfer WT; Woodson PB
    Drug Alcohol Depend; 1979; 4(1-2):155-66. PubMed ID: 228922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane effects of ethanol: bulk lipid versus lipid domains.
    Wood WG; Schroeder F
    Life Sci; 1988; 43(6):467-75. PubMed ID: 3043131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freeze or dehydrate: only two options for the survival of subzero temperatures in the arctic enchytraeid Fridericia ratzeli.
    Pedersen PG; Holmstrup M
    J Comp Physiol B; 2003 Sep; 173(7):601-9. PubMed ID: 12898166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of freeze-thaw cycles and 4-nonylphenol on cellular energy allocation in the freeze-tolerant enchytraeid Enchytraeus albidus.
    Patrício-Silva AL; Amorim MJ
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3548-55. PubMed ID: 26490934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid phase behavior and stabilization of domains in membranes of platelets.
    Leidy C; Gousset K; Ricker J; Wolkers WF; Tsvetkova NM; Tablin F; Crowe JH
    Cell Biochem Biophys; 2004; 40(2):123-48. PubMed ID: 15054219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of alcohols in growth, lipid composition, and membrane fluidity of yeasts, bacteria, and archaea.
    Huffer S; Clark ME; Ning JC; Blanch HW; Clark DS
    Appl Environ Microbiol; 2011 Sep; 77(18):6400-8. PubMed ID: 21784917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation.
    Beranová J; Jemioła-Rzemińska M; Elhottová D; Strzałka K; Konopásek I
    Biochim Biophys Acta; 2008 Feb; 1778(2):445-53. PubMed ID: 18154726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane fluidity and fatty acid comparisons in psychrotrophic and mesophilic strains of Acidithiobacillus ferrooxidans under cold growth temperatures.
    Mykytczuk NC; Trevors JT; Twine SM; Ferroni GD; Leduc LG
    Arch Microbiol; 2010 Dec; 192(12):1005-18. PubMed ID: 20852847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.