These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 25050525)

  • 1. Centimeter-long electron transport in marine sediments via conductive minerals.
    Malvankar NS; King GM; Lovley DR
    ISME J; 2015 Feb; 9(2):527-31. PubMed ID: 25050525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric currents couple spatially separated biogeochemical processes in marine sediment.
    Nielsen LP; Risgaard-Petersen N; Fossing H; Christensen PB; Sayama M
    Nature; 2010 Feb; 463(7284):1071-4. PubMed ID: 20182510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment.
    Marzocchi U; Trojan D; Larsen S; Meyer RL; Revsbech NP; Schramm A; Nielsen LP; Risgaard-Petersen N
    ISME J; 2014 Aug; 8(8):1682-90. PubMed ID: 24577351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments.
    Sandfeld T; Marzocchi U; Petro C; Schramm A; Risgaard-Petersen N
    ISME J; 2020 May; 14(5):1233-1246. PubMed ID: 32042102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamics of cable bacteria colonization in surface sediments: a 2D view.
    Yin H; Aller RC; Zhu Q; Aller JY
    Sci Rep; 2021 Mar; 11(1):7167. PubMed ID: 33785772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rethinking sediment biogeochemistry after the discovery of electric currents.
    Nielsen LP; Risgaard-Petersen N
    Ann Rev Mar Sci; 2015; 7():425-42. PubMed ID: 25251266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conductive Particles Enable Syntrophic Acetate Oxidation between
    Rotaru AE; Calabrese F; Stryhanyuk H; Musat F; Shrestha PM; Weber HS; Snoeyenbos-West OLO; Hall POJ; Richnow HH; Musat N; Thamdrup B
    mBio; 2018 May; 9(3):. PubMed ID: 29717006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic pyrite oxidation in a naturally occurring pyrite-rich sediment under preload surcharge.
    Karikari-Yeboah O; Skinner W; Addai-Mensah J
    Environ Monit Assess; 2019 Mar; 191(4):216. PubMed ID: 30868246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rates and potential mechanism of anaerobic nitrate-dependent microbial pyrite oxidation.
    Bosch J; Meckenstock RU
    Biochem Soc Trans; 2012 Dec; 40(6):1280-3. PubMed ID: 23176468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative transformation of iron monosulfides and pyrite in estuarine sediments: Implications for trace metals mobilisation.
    Choppala G; Bush R; Moon E; Ward N; Wang Z; Bolan N; Sullivan L
    J Environ Manage; 2017 Jan; 186(Pt 2):158-166. PubMed ID: 27394083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive iron in marine sediments.
    Canfield DE
    Geochim Cosmochim Acta; 1989; 53():619-32. PubMed ID: 11539783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-distance electron transport in individual, living cable bacteria.
    Bjerg JT; Boschker HTS; Larsen S; Berry D; Schmid M; Millo D; Tataru P; Meysman FJR; Wagner M; Nielsen LP; Schramm A
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5786-5791. PubMed ID: 29735671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the evolution and physiology of cable bacteria.
    Kjeldsen KU; Schreiber L; Thorup CA; Boesen T; Bjerg JT; Yang T; Dueholm MS; Larsen S; Risgaard-Petersen N; Nierychlo M; Schmid M; Bøggild A; van de Vossenberg J; Geelhoed JS; Meysman FJR; Wagner M; Nielsen PH; Nielsen LP; Schramm A
    Proc Natl Acad Sci U S A; 2019 Sep; 116(38):19116-19125. PubMed ID: 31427514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cable bacteria with electric connection to oxygen attract flocks of diverse bacteria.
    Bjerg JJ; Lustermans JJM; Marshall IPG; Mueller AJ; Brokjær S; Thorup CA; Tataru P; Schmid M; Wagner M; Nielsen LP; Schramm A
    Nat Commun; 2023 Mar; 14(1):1614. PubMed ID: 36959175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cable Bacteria in Freshwater Sediments.
    Risgaard-Petersen N; Kristiansen M; Frederiksen RB; Dittmer AL; Bjerg JT; Trojan D; Schreiber L; Damgaard LR; Schramm A; Nielsen LP
    Appl Environ Microbiol; 2015 Sep; 81(17):6003-11. PubMed ID: 26116678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocol for using autoclaved intertidal sediment as a medium to enrich marine cable bacteria.
    Li C; Reimers CE; Chace PJ
    STAR Protoc; 2022 Sep; 3(3):101604. PubMed ID: 35990745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox-dependent phosphorus burial and regeneration in an offshore sulfidic sediment core in North Yellow Sea, China.
    Zhao G; Sheng Y; Jiang M; Yin X
    Mar Pollut Bull; 2019 Dec; 149():110582. PubMed ID: 31550573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Centimeter-Long Microbial Electron Transport for Bioremediation Applications.
    Yuan Y; Zhou L; Hou R; Wang Y; Zhou S
    Trends Biotechnol; 2021 Feb; 39(2):181-193. PubMed ID: 32680591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites.
    Hofstetter TB; Neumann A; Schwarzenbach RP
    Environ Sci Technol; 2006 Jan; 40(1):235-42. PubMed ID: 16433357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.