These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25050628)

  • 21. Molecular structure of monomorphic peptide fibrils within a kinetically trapped hydrogel network.
    Nagy-Smith K; Moore E; Schneider J; Tycko R
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9816-21. PubMed ID: 26216960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Balancing hydrophobicity and sequence pattern to influence self-assembly of amphipathic peptides.
    Betush RJ; Urban JM; Nilsson BL
    Biopolymers; 2018 Jan; ():. PubMed ID: 29292825
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rational Design of Short Peptide-Based Hydrogels with MMP-2 Responsiveness for Controlled Anticancer Peptide Delivery.
    Chen C; Zhang Y; Hou Z; Cui X; Zhao Y; Xu H
    Biomacromolecules; 2017 Nov; 18(11):3563-3571. PubMed ID: 28828862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enantiomeric β-sheet peptides from Aβ form homochiral pleated β-sheets rather than heterochiral rippled β-sheets.
    Li X; Rios SE; Nowick JS
    Chem Sci; 2022 Jul; 13(26):7739-7746. PubMed ID: 35865901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A reductive trigger for peptide self-assembly and hydrogelation.
    Bowerman CJ; Nilsson BL
    J Am Chem Soc; 2010 Jul; 132(28):9526-7. PubMed ID: 20405940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel.
    Rughani RV; Salick DA; Lamm MS; Yucel T; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 May; 10(5):1295-304. PubMed ID: 19344123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of pH and calcium ions on the stability of amphiphilic and anionic β-sheet peptide hydrogels.
    Zarzhitsky S; Edri H; Azoulay Z; Cohen I; Ventura Y; Gitelman A; Rapaport H
    Biopolymers; 2013 Nov; 100(6):760-72. PubMed ID: 23893547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extended apolar beta-peptide foldamers: the role of axis chirality on beta-peptide sheet stability.
    Pohl G; Beke T; Csizmadia IG; Perczel A
    J Phys Chem B; 2010 Jul; 114(29):9338-48. PubMed ID: 20666395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A DFT study of structure and stability of pleated and rippled cross-β sheets with hydrophobic sidechains.
    Raskatov JA
    Biopolymers; 2021 Jan; 112(1):e23391. PubMed ID: 32737991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rippled Sheets: The Early Polyglycine Days and Recent Developments in Nylons.
    Lotz B
    Chembiochem; 2022 Mar; 23(5):e202100658. PubMed ID: 35107198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Laminated morphology of nontwisting beta-sheet fibrils constructed via peptide self-assembly.
    Lamm MS; Rajagopal K; Schneider JP; Pochan DJ
    J Am Chem Soc; 2005 Nov; 127(47):16692-700. PubMed ID: 16305260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels.
    Xu XD; Chen CS; Lu B; Cheng SX; Zhang XZ; Zhuo RX
    J Phys Chem B; 2010 Feb; 114(7):2365-72. PubMed ID: 20166681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The rippled β-sheet layer configuration-a novel supramolecular architecture based on predictions by Pauling and Corey.
    Hazari A; Sawaya MR; Vlahakis N; Johnstone TC; Boyer D; Rodriguez J; Eisenberg D; Raskatov JA
    Chem Sci; 2022 Aug; 13(31):8947-8952. PubMed ID: 36091211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Helix-turn-helix peptides that form alpha-helical fibrils: turn sequences drive fibril structure.
    Lazar KL; Miller-Auer H; Getz GS; Orgel JP; Meredith SC
    Biochemistry; 2005 Sep; 44(38):12681-9. PubMed ID: 16171382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular, Local, and Network-Level Basis for the Enhanced Stiffness of Hydrogel Networks Formed from Coassembled Racemic Peptides: Predictions from Pauling and Corey.
    Nagy-Smith K; Beltramo PJ; Moore E; Tycko R; Furst EM; Schneider JP
    ACS Cent Sci; 2017 Jun; 3(6):586-597. PubMed ID: 28691070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficacy of self-assembled hydrogels composed of positively or negatively charged peptides as scaffolds for cell culture.
    Nagayasu A; Yokoi H; Minaguchi JA; Hosaka YZ; Ueda H; Takehana K
    J Biomater Appl; 2012 Feb; 26(6):651-65. PubMed ID: 21123284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amphipathic short helix-stabilized peptides with cell-membrane penetrating ability.
    Yamashita H; Demizu Y; Shoda T; Sato Y; Oba M; Tanaka M; Kurihara M
    Bioorg Med Chem; 2014 Apr; 22(8):2403-8. PubMed ID: 24661993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aromatic-Aromatic Interactions Enable α-Helix to β-Sheet Transition of Peptides to Form Supramolecular Hydrogels.
    Li J; Du X; Hashim S; Shy A; Xu B
    J Am Chem Soc; 2017 Jan; 139(1):71-74. PubMed ID: 27997165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.