These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25050706)

  • 1. Dual specificity and novel structural folding of yeast phosphodiesterase-1 for hydrolysis of second messengers cyclic adenosine and guanosine 3',5'-monophosphate.
    Tian Y; Cui W; Huang M; Robinson H; Wan Y; Wang Y; Ke H
    Biochemistry; 2014 Aug; 53(30):4938-45. PubMed ID: 25050706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between phosphodiesterases in the regulation of the cardiac β-adrenergic pathway.
    Zhao CY; Greenstein JL; Winslow RL
    J Mol Cell Cardiol; 2015 Nov; 88():29-38. PubMed ID: 26388264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of substrate specificity determinants in human cAMP-specific phosphodiesterase 4A by single-point mutagenesis.
    Richter W; Unciuleac L; Hermsdorf T; Kronbach T; Dettmer D
    Cell Signal; 2001 Mar; 13(3):159-67. PubMed ID: 11282454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme assays for cGMP hydrolyzing phosphodiesterases.
    Rybalkin SD; Hinds TR; Beavo JA
    Methods Mol Biol; 2013; 1020():51-62. PubMed ID: 23709025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic nucleotide phosphodiesterases (PDEs) in human osteoblastic cells; the effect of PDE inhibition on cAMP accumulation.
    Ahlström M; Pekkinen M; Huttunen M; Lamberg-Allardt C
    Cell Mol Biol Lett; 2005; 10(2):305-19. PubMed ID: 16010295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic nucleotide phosphodiesterase PDE1C1 in human cardiac myocytes.
    Vandeput F; Wolda SL; Krall J; Hambleton R; Uher L; McCaw KN; Radwanski PB; Florio V; Movsesian MA
    J Biol Chem; 2007 Nov; 282(45):32749-57. PubMed ID: 17726023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations of PKA cyclic nucleotide-binding domains reveal novel aspects of cyclic nucleotide selectivity.
    Lorenz R; Moon EW; Kim JJ; Schmidt SH; Sankaran B; Pavlidis IV; Kim C; Herberg FW
    Biochem J; 2017 Jul; 474(14):2389-2403. PubMed ID: 28583991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic role of cGMP in S. cerevisiae: the murine phosphodiesterase-5 activity affects yeast cell proliferation by altering the cAMP/cGMP equilibrium.
    Cardarelli S; Giorgi M; Poiana G; Biagioni S; Saliola M
    FEMS Yeast Res; 2019 May; 19(3):. PubMed ID: 30772891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac Phosphodiesterases and Their Modulation for Treating Heart Disease.
    Kim GE; Kass DA
    Handb Exp Pharmacol; 2017; 243():249-269. PubMed ID: 27787716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanodomain Regulation of Cardiac Cyclic Nucleotide Signaling by Phosphodiesterases.
    Kokkonen K; Kass DA
    Annu Rev Pharmacol Toxicol; 2017 Jan; 57():455-479. PubMed ID: 27732797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the activity of five adenosine-3',5'-monophosphate-degrading phosphodiesterase isozymes in the adult rat neocortex.
    Sutor B; Mantell K; Bacher B
    Neurosci Lett; 1998 Aug; 252(1):57-60. PubMed ID: 9756358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isoforms of cyclic nucleotide phosphodiesterase PDE3 and their contribution to cAMP hydrolytic activity in subcellular fractions of human myocardium.
    Hambleton R; Krall J; Tikishvili E; Honeggar M; Ahmad F; Manganiello VC; Movsesian MA
    J Biol Chem; 2005 Nov; 280(47):39168-74. PubMed ID: 16172121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel PDE1A coupled to M2AChR at plasma membranes from bovine tracheal smooth muscle.
    Mastromatteo-Alberga P; Placeres-Uray F; Alfonzo-González MA; Alfonzo RG; Becemberg IL; Alfonzo MJ
    J Recept Signal Transduct Res; 2016; 36(3):278-87. PubMed ID: 26513204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity.
    Xu RX; Hassell AM; Vanderwall D; Lambert MH; Holmes WD; Luther MA; Rocque WJ; Milburn MV; Zhao Y; Ke H; Nolte RT
    Science; 2000 Jun; 288(5472):1822-5. PubMed ID: 10846163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The perspective of cAMP/cGMP signaling and cyclic nucleotide phosphodiesterases in aortic aneurysm and dissection.
    Shu T; Zhou Y; Yan C
    Vascul Pharmacol; 2024 Mar; 154():107278. PubMed ID: 38262506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphodiesterase 1: A Unique Drug Target for Degenerative Diseases and Cognitive Dysfunction.
    Wennogle LP; Hoxie H; Peng Y; Hendrick JP
    Adv Neurobiol; 2017; 17():349-384. PubMed ID: 28956339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases.
    Zhang KY; Card GL; Suzuki Y; Artis DR; Fong D; Gillette S; Hsieh D; Neiman J; West BL; Zhang C; Milburn MV; Kim SH; Schlessinger J; Bollag G
    Mol Cell; 2004 Jul; 15(2):279-86. PubMed ID: 15260978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Basis of Dual Specificity of Sinorhizobium meliloti Clr, a cAMP and cGMP Receptor Protein.
    Werel L; Farmani N; Krol E; Serrania J; Essen LO; Becker A
    mBio; 2023 Apr; 14(2):e0302822. PubMed ID: 37017526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a novel cAMP-binding, cAMP-specific cyclic nucleotide phosphodiesterase (TcrPDEB1) from Trypanosoma cruzi.
    Díaz-Benjumea R; Laxman S; Hinds TR; Beavo JA; Rascón A
    Biochem J; 2006 Oct; 399(2):305-14. PubMed ID: 16776650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "cAMP-specific" phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide.
    Bellamy TC; Garthwaite J
    Mol Pharmacol; 2001 Jan; 59(1):54-61. PubMed ID: 11125024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.