BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25050855)

  • 1. Microwave-specific acceleration of a Friedel-Crafts reaction: evidence for selective heating in homogeneous solution.
    Rosana MR; Hunt J; Ferrari A; Southworth TA; Tao Y; Stiegman AE; Dudley GB
    J Org Chem; 2014 Aug; 79(16):7437-50. PubMed ID: 25050855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameters affecting the microwave-specific acceleration of a chemical reaction.
    Chen PK; Rosana MR; Dudley GB; Stiegman AE
    J Org Chem; 2014 Aug; 79(16):7425-36. PubMed ID: 25050921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave Heating Outperforms Conventional Heating for a Thermal Reaction that Produces a Thermally Labile Product: Observations Consistent with Selective Microwave Heating.
    Duangkamol C; Batsomboon P; Stiegman AE; Dudley GB
    Chem Asian J; 2019 Aug; 14(15):2594-2597. PubMed ID: 31157510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerated thermal reaction kinetics by indirect microwave heating of a microwave-transparent substrate.
    Tavakoli A; Stiegman AE; Dudley GB
    Phys Chem Chem Phys; 2022 Feb; 24(5):2794-2799. PubMed ID: 35040464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted synthesis of metallic nanostructures in solution.
    Tsuji M; Hashimoto M; Nishizawa Y; Kubokawa M; Tsuji T
    Chemistry; 2005 Jan; 11(2):440-52. PubMed ID: 15515072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling.
    Hosseini M; Stiasni N; Barbieri V; Kappe CO
    J Org Chem; 2007 Feb; 72(4):1417-24. PubMed ID: 17288387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics.
    Surducan E; Surducan V; Limare A; Neamtu C; Di Giuseppe E
    Rev Sci Instrum; 2014 Dec; 85(12):124702. PubMed ID: 25554309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology.
    Kappe CO
    Acc Chem Res; 2013 Jul; 46(7):1579-87. PubMed ID: 23463987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study.
    Haque E; Khan NA; Park JH; Jhung SH
    Chemistry; 2010 Jan; 16(3):1046-52. PubMed ID: 20014080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-assisted organic synthesis and transformations using benign reaction media.
    Polshettiwar V; Varma RS
    Acc Chem Res; 2008 May; 41(5):629-39. PubMed ID: 18419142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators.
    Razzaq T; Kremsner JM; Kappe CO
    J Org Chem; 2008 Aug; 73(16):6321-9. PubMed ID: 18613726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave-assisted green synthesis of silver nanostructures.
    Nadagouda MN; Speth TF; Varma RS
    Acc Chem Res; 2011 Jul; 44(7):469-78. PubMed ID: 21526846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-assisted cross-coupling and hydrogenation chemistry by using heterogeneous transition-metal catalysts: an evaluation of the role of selective catalyst heating.
    Irfan M; Fuchs M; Glasnov TN; Kappe CO
    Chemistry; 2009 Nov; 15(43):11608-18. PubMed ID: 19774573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impulsive solvent heating probed by picosecond x-ray diffraction.
    Cammarata M; Lorenc M; Kim TK; Lee JH; Kong QY; Pontecorvo E; Lo Russo M; Schiró G; Cupane A; Wulff M; Ihee H
    J Chem Phys; 2006 Mar; 124(12):124504. PubMed ID: 16599694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the energy efficiency of microwave-assisted organic reactions.
    Razzaq T; Kappe CO
    ChemSusChem; 2008; 1(1-2):123-32. PubMed ID: 18605675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwaves in organic synthesis. Thermal and non-thermal microwave effects.
    de la Hoz A; Díaz-Ortiz A; Moreno A
    Chem Soc Rev; 2005 Feb; 34(2):164-78. PubMed ID: 15672180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry.
    Herrero MA; Kremsner JM; Kappe CO
    J Org Chem; 2008 Jan; 73(1):36-47. PubMed ID: 18062704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave-enhanced reaction rates for nanoparticle synthesis.
    Gerbec JA; Magana D; Washington A; Strouse GF
    J Am Chem Soc; 2005 Nov; 127(45):15791-800. PubMed ID: 16277522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave catalyzed carbothermic reduction of zinc oxide and zinc ferrite: effect of microwave energy on the reaction activation energy.
    Omran M; Fabritius T; Heikkinen EP; Vuolio T; Yu Y; Chen G; Kacar Y
    RSC Adv; 2020 Jun; 10(40):23959-23968. PubMed ID: 35517350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.